Suppr超能文献

32种癌症类型微生物群特征的综合分析。

Comprehensive analysis of microbiota signature across 32 cancer types.

作者信息

Yang Xia, An Huimin, He Yongtao, Fu Guoxiang, Jiang Zhinong

机构信息

Department of pathology, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, China.

出版信息

Front Oncol. 2023 Mar 8;13:1127225. doi: 10.3389/fonc.2023.1127225. eCollection 2023.

Abstract

Microbial communities significantly inhabit the human body. Evidence shows the interaction between the human microbiome and host cells plays a central role in multiple physiological processes and organ microenvironments. However, the majority of related studies focus on gut microbiota or specific tissues/organs, and the component signature of intratumor microbiota across various cancer types remains unclear. Here, we systematically analyzed the correlation between intratumor microbial signature with survival outcomes, genomic features, and immune profiles across 32 cancer types based on the public databases of Bacteria in Cancer (BIC) and The Cancer Genome Atlas (TCGA). Results showed the relative abundance of microbial taxa in tumors compared to normal tissues was observed as particularly noticeable. Survival analysis found that specific candidate microbial taxa were correlated with prognosis across various cancers. Then, a microbial-based scoring system (MS), which was composed of 64 candidate prognostic microbes, was established. Further analyses showed significant differences in survival status, genomic function, and immune profiles among the distinct MS subgroups. Taken together, this study reveals the diversity and complexity of microbiomes in tumors. Classifying cancer into different subtypes based on intratumor microbial signatures might reasonably reflect genomic characteristics, immune features, and survival status.

摘要

微生物群落大量存在于人体中。有证据表明,人类微生物组与宿主细胞之间的相互作用在多种生理过程和器官微环境中起着核心作用。然而,大多数相关研究集中在肠道微生物群或特定组织/器官上,不同癌症类型的肿瘤内微生物群的组成特征仍不清楚。在此,我们基于癌症中的细菌(BIC)和癌症基因组图谱(TCGA)的公共数据库,系统地分析了32种癌症类型中肿瘤内微生物特征与生存结果、基因组特征和免疫谱之间的相关性。结果显示,与正常组织相比,肿瘤中微生物类群的相对丰度尤为明显。生存分析发现,特定的候选微生物类群与各种癌症的预后相关。然后,建立了一个由64种候选预后微生物组成的基于微生物的评分系统(MS)。进一步分析表明,不同MS亚组在生存状态、基因组功能和免疫谱方面存在显著差异。综上所述,本研究揭示了肿瘤中微生物群的多样性和复杂性。基于肿瘤内微生物特征将癌症分为不同亚型可能合理反映基因组特征、免疫特征和生存状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff63/10031003/95612930ae8c/fonc-13-1127225-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验