Duke University, Durham, NC, USA.
University of California, Berkeley, CA, USA.
Philos Trans A Math Phys Eng Sci. 2023 May 15;381(2247):20220153. doi: 10.1098/rsta.2022.0153. Epub 2023 Mar 27.
This paper provides a critical review of the Bayesian perspective of causal inference based on the potential outcomes framework. We review the causal estimands, assignment mechanism, the general structure of Bayesian inference of causal effects and sensitivity analysis. We highlight issues that are unique to Bayesian causal inference, including the role of the propensity score, the definition of identifiability, the choice of priors in both low- and high-dimensional regimes. We point out the central role of covariate overlap and more generally the design stage in Bayesian causal inference. We extend the discussion to two complex assignment mechanisms: instrumental variable and time-varying treatments. We identify the strengths and weaknesses of the Bayesian approach to causal inference. Throughout, we illustrate the key concepts via examples. This article is part of the theme issue 'Bayesian inference: challenges, perspectives, and prospects'.
本文对基于潜在结果框架的因果推理的贝叶斯观点进行了批判性回顾。我们回顾了因果估计量、分配机制、因果效应的贝叶斯推断的一般结构和敏感性分析。我们强调了贝叶斯因果推断所特有的问题,包括倾向评分的作用、可识别性的定义、在低维和高维情况下先验的选择。我们指出了协变量重叠的核心作用,更广泛地说,在贝叶斯因果推断中设计阶段的作用。我们将讨论扩展到两种复杂的分配机制:工具变量和时变处理。我们确定了贝叶斯因果推理方法的优缺点。在整个过程中,我们通过示例来说明关键概念。本文是“贝叶斯推断:挑战、观点和前景”主题特刊的一部分。