Suppr超能文献

因果效应的贝叶斯估计实用介绍:参数化和非参数化方法

A practical introduction to Bayesian estimation of causal effects: Parametric and nonparametric approaches.

作者信息

Oganisian Arman, Roy Jason A

机构信息

Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Department of Biostatistics and Epidemiology, Rutgers University, New Brunswick, New Jersey, USA.

出版信息

Stat Med. 2021 Jan 30;40(2):518-551. doi: 10.1002/sim.8761. Epub 2020 Oct 5.

Abstract

Substantial advances in Bayesian methods for causal inference have been made in recent years. We provide an introduction to Bayesian inference for causal effects for practicing statisticians who have some familiarity with Bayesian models and would like an overview of what it can add to causal estimation in practical settings. In the paper, we demonstrate how priors can induce shrinkage and sparsity in parametric models and be used to perform probabilistic sensitivity analyses around causal assumptions. We provide an overview of nonparametric Bayesian estimation and survey their applications in the causal inference literature. Inference in the point-treatment and time-varying treatment settings are considered. For the latter, we explore both static and dynamic treatment regimes. Throughout, we illustrate implementation using off-the-shelf open source software. We hope to leave the reader with implementation-level knowledge of Bayesian causal inference using both parametric and nonparametric models. All synthetic examples and code used in the paper are publicly available on a companion GitHub repository.

摘要

近年来,贝叶斯因果推断方法取得了重大进展。我们为那些对贝叶斯模型有一定了解并希望概述其在实际环境中因果估计方面所能提供的内容的统计学家,提供贝叶斯因果效应推断的介绍。在本文中,我们展示了先验如何在参数模型中引起收缩和稀疏性,并用于围绕因果假设进行概率敏感性分析。我们概述了非参数贝叶斯估计,并审视了它们在因果推断文献中的应用。考虑了点治疗和时变治疗设置中的推断。对于后者,我们探讨了静态和动态治疗方案。在整个过程中,我们使用现成的开源软件来说明实现过程。我们希望让读者掌握使用参数和非参数模型进行贝叶斯因果推断的实现层面的知识。本文中使用的所有合成示例和代码都可在配套的GitHub存储库上公开获取。

相似文献

1
A practical introduction to Bayesian estimation of causal effects: Parametric and nonparametric approaches.
Stat Med. 2021 Jan 30;40(2):518-551. doi: 10.1002/sim.8761. Epub 2020 Oct 5.
2
A Bayesian nonparametric approach to causal inference on quantiles.
Biometrics. 2018 Sep;74(3):986-996. doi: 10.1111/biom.12863. Epub 2018 Feb 25.
3
Prior and posterior checking of implicit causal assumptions.
Biometrics. 2023 Dec;79(4):3153-3164. doi: 10.1111/biom.13886. Epub 2023 Jun 16.
4
A framework for Bayesian nonparametric inference for causal effects of mediation.
Biometrics. 2017 Jun;73(2):401-409. doi: 10.1111/biom.12575. Epub 2016 Aug 1.
5
Bayesian nonparametric generative models for causal inference with missing at random covariates.
Biometrics. 2018 Dec;74(4):1193-1202. doi: 10.1111/biom.12875. Epub 2018 Mar 26.
8
A Bayesian nonparametric approach to marginal structural models for point treatments and a continuous or survival outcome.
Biostatistics. 2017 Jan;18(1):32-47. doi: 10.1093/biostatistics/kxw029. Epub 2016 Jun 26.
10

引用本文的文献

1
Accuracy of preferred language data in a multi-hospital electronic health record in Toronto, Canada.
PLOS Digit Health. 2025 Sep 3;4(9):e0000999. doi: 10.1371/journal.pdig.0000999. eCollection 2025 Sep.
3
Priors and Propensity Scores in Bayesian Causal Inference.
Obs Stud. 2025 Apr 11;11(1):47-60. doi: 10.1353/obs.2025.a956841. eCollection 2025.
4
A causal Bayesian model to evaluate shoulder pathology effect on glenoid bone mineral density.
J Orthop Surg Res. 2025 Jun 4;20(1):569. doi: 10.1186/s13018-025-05983-x.
5
Bridging theory and data: A computational workflow for cultural evolution.
Proc Natl Acad Sci U S A. 2024 Nov 26;121(48):e2322887121. doi: 10.1073/pnas.2322887121. Epub 2024 Nov 18.
6
Covariate adjustment in Bayesian adaptive randomized controlled trials.
Stat Methods Med Res. 2024 Mar;33(3):480-497. doi: 10.1177/09622802241227957. Epub 2024 Feb 7.
7
BayesGmed: An R-package for Bayesian causal mediation analysis.
PLoS One. 2023 Jun 14;18(6):e0287037. doi: 10.1371/journal.pone.0287037. eCollection 2023.
8
Socio-economic and ethnic disparities in childhood cancer survival, Yorkshire, UK.
Br J Cancer. 2023 May;128(9):1710-1722. doi: 10.1038/s41416-023-02209-x. Epub 2023 Feb 24.
10
An introduction to causal inference for pharmacometricians.
CPT Pharmacometrics Syst Pharmacol. 2023 Jan;12(1):27-40. doi: 10.1002/psp4.12894. Epub 2022 Dec 8.

本文引用的文献

1
Stan: A Probabilistic Programming Language.
J Stat Softw. 2017;76. doi: 10.18637/jss.v076.i01. Epub 2017 Jan 11.
2
Optimally Balanced Gaussian Process Propensity Scores for Estimating Treatment Effects.
J R Stat Soc Ser A Stat Soc. 2020 Jan;183(1):355-377. doi: 10.1111/rssa.12502. Epub 2019 Sep 3.
4
A Bayesian nonparametric model for zero-inflated outcomes: Prediction, clustering, and causal estimation.
Biometrics. 2021 Mar;77(1):125-135. doi: 10.1111/biom.13244. Epub 2020 Mar 17.
5
Bayesian additive regression trees and the General BART model.
Stat Med. 2019 Nov 10;38(25):5048-5069. doi: 10.1002/sim.8347. Epub 2019 Aug 28.
7
A Bayesian Machine Learning Approach for Optimizing Dynamic Treatment Regimes.
J Am Stat Assoc. 2018;113(523):1255-1267. doi: 10.1080/01621459.2017.1340887. Epub 2018 Oct 8.
9
Bayesian nonparametric generative models for causal inference with missing at random covariates.
Biometrics. 2018 Dec;74(4):1193-1202. doi: 10.1111/biom.12875. Epub 2018 Mar 26.
10
A Bayesian nonparametric approach to causal inference on quantiles.
Biometrics. 2018 Sep;74(3):986-996. doi: 10.1111/biom.12863. Epub 2018 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验