Suppr超能文献

基于多中心静息态功能磁共振成像的注意缺陷多动障碍个体识别:一种放射组学分析。

Identifying individuals with attention-deficit/hyperactivity disorder based on multisite resting-state functional magnetic resonance imaging: A radiomics analysis.

机构信息

Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, 250000, Jinan, China.

Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016, China.

出版信息

Hum Brain Mapp. 2023 Jun 1;44(8):3433-3445. doi: 10.1002/hbm.26290. Epub 2023 Mar 27.

Abstract

Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, characterized by symptoms of age-inappropriate inattention, hyperactivity, and impulsivity. Apart from behavioral symptoms investigated by psychiatric methods, there is no standard biological test to diagnose ADHD. This study aimed to explore whether the radiomics features based on resting-state functional magnetic resonance (rs-fMRI) have more discriminative power for the diagnosis of ADHD. The rs-fMRI of 187 subjects with ADHD and 187 healthy controls were collected from 5 sites of ADHD-200 Consortium. A total of four preprocessed rs-fMRI images including regional homogeneity (ReHo), amplitude of low-frequency fluctuation (ALFF), voxel-mirrored homotopic connectivity (VMHC) and network degree centrality (DC) were used in this study. From each of the four images, we extracted 93 radiomics features within each of 116 automated anatomical labeling brain areas, resulting in a total of 43,152 features for each subject. After dimension reduction and feature selection, 19 radiomics features were retained (5 from ALFF, 9 from ReHo, 3 from VMHC and 2 from DC). By training and optimizing a support vector machine model using the retained features of training dataset, we achieved the accuracy of 76.3% and 77.0% (areas under curve = 0.811 and 0.797) in the training and testing datasets, respectively. Our findings demonstrate that radiomics can be a novel strategy for fully utilizing rs-fMRI information to distinguish ADHD from healthy controls. The rs-fMRI-based radiomics features have the potential to be neuroimaging biomarkers for ADHD.

摘要

注意缺陷多动障碍(ADHD)是最常见的神经发育障碍之一,其特征为注意力不集中、多动和冲动等与年龄不相符的行为症状。除了通过精神科方法进行的行为症状评估外,目前尚无标准的生物学检测手段用于 ADHD 的诊断。本研究旨在探索基于静息态功能磁共振(rs-fMRI)的放射组学特征是否对 ADHD 的诊断具有更强的判别能力。该研究从 ADHD-200 联盟的 5 个研究中心共收集了 187 名 ADHD 患者和 187 名健康对照者的 rs-fMRI。本研究共使用了 4 组预处理 rs-fMRI 图像,包括局部一致性(ReHo)、低频振幅(ALFF)、体素镜像同伦连接(VMHC)和网络节点度中心性(DC)。从每个图像中,我们在 116 个自动解剖标注脑区的每个脑区中提取了 93 个放射组学特征,从而得到了每个被试者共 43,152 个特征。通过降维和特征选择,保留了 19 个放射组学特征(ALFF 有 5 个,ReHo 有 9 个,VMHC 有 3 个,DC 有 2 个)。通过使用训练数据集的保留特征训练和优化支持向量机模型,我们在训练和测试数据集中分别达到了 76.3%和 77.0%的准确率(曲线下面积分别为 0.811 和 0.797)。我们的研究结果表明,放射组学可以作为一种新策略,充分利用 rs-fMRI 信息来区分 ADHD 患者和健康对照者。基于 rs-fMRI 的放射组学特征有望成为 ADHD 的神经影像学生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4eda/10171499/1d77b61bd9cb/HBM-44-3433-g006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验