Suppr超能文献

使用可穿戴摄像头和深度学习技术捕捉儿童的食物摄入量。

Capturing children food exposure using wearable cameras and deep learning.

作者信息

Elbassuoni Shady, Ghattas Hala, El Ati Jalila, Zoughby Yorgo, Semaan Aline, Akl Christelle, Trabelsi Tarek, Talhouk Reem, Ben Gharbia Houda, Shmayssani Zoulfikar, Mourad Aya

机构信息

Computer Science Department, American University of Beirut, Beirut, Lebanon.

Center for Research on Population and Health, American University of Beirut, Beirut, Lebanon.

出版信息

PLOS Digit Health. 2023 Mar 27;2(3):e0000211. doi: 10.1371/journal.pdig.0000211. eCollection 2023 Mar.

Abstract

Children's dietary habits are influenced by complex factors within their home, school and neighborhood environments. Identifying such influencers and assessing their effects is traditionally based on self-reported data which can be prone to recall bias. We developed a culturally acceptable machine-learning-based data-collection system to objectively capture school-children's exposure to food (including food items, food advertisements, and food outlets) in two urban Arab centers: Greater Beirut, in Lebanon, and Greater Tunis, in Tunisia. Our machine-learning-based system consists of 1) a wearable camera that captures continuous footage of children's environment during a typical school day, 2) a machine learning model that automatically identifies images related to food from the collected data and discards any other footage, 3) a second machine learning model that classifies food-related images into images that contain actual food items, images that contain food advertisements, and images that contain food outlets, and 4) a third machine learning model that classifies images that contain food items into two classes, corresponding to whether the food items are being consumed by the child wearing the camera or whether they are consumed by others. This manuscript reports on a user-centered design study to assess the acceptability of using wearable cameras to capture food exposure among school children in Greater Beirut and Greater Tunis. We then describe how we trained our first machine learning model to detect food exposure images using data collected from the Web and utilizing the latest trends in deep learning for computer vision. Next, we describe how we trained our other machine learning models to classify food-related images into their respective categories using a combination of public data and data acquired via crowdsourcing. Finally, we describe how the different components of our system were packed together and deployed in a real-world case study and we report on its performance.

摘要

儿童的饮食习惯受到家庭、学校和邻里环境中复杂因素的影响。传统上,识别这些影响因素并评估其效果是基于自我报告的数据,而这些数据可能容易出现回忆偏差。我们开发了一种文化上可接受的基于机器学习的数据收集系统,以客观地捕捉阿拉伯两个城市中心(黎巴嫩的大贝鲁特和突尼斯的大突尼斯)学童接触食物的情况(包括食品、食品广告和食品店)。我们基于机器学习的系统包括:1)一个可穿戴摄像头,在典型的上学日捕捉儿童周围环境的连续画面;2)一个机器学习模型,从收集的数据中自动识别与食物相关的图像,并丢弃任何其他画面;3)第二个机器学习模型,将与食物相关的图像分类为包含实际食品的图像、包含食品广告的图像和包含食品店的图像;4)第三个机器学习模型,将包含食品的图像分为两类,分别对应佩戴摄像头的儿童是否正在食用这些食品以及这些食品是否被其他人食用。本手稿报告了一项以用户为中心的设计研究,以评估在大贝鲁特和大突尼斯使用可穿戴摄像头捕捉学童食物接触情况的可接受性。然后,我们描述了如何使用从网络收集的数据并利用深度学习在计算机视觉方面的最新趋势来训练我们的第一个机器学习模型,以检测食物接触图像。接下来,我们描述了如何使用公共数据和通过众包获取的数据相结合的方式来训练我们的其他机器学习模型,将与食物相关的图像分类到各自的类别中。最后,我们描述了我们系统的不同组件是如何组合在一起并在一个实际案例研究中进行部署的,并报告了其性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a96/10042366/31333952b2f1/pdig.0000211.g001.jpg

相似文献

1
Capturing children food exposure using wearable cameras and deep learning.
PLOS Digit Health. 2023 Mar 27;2(3):e0000211. doi: 10.1371/journal.pdig.0000211. eCollection 2023 Mar.
5
Children's everyday exposure to food marketing: an objective analysis using wearable cameras.
Int J Behav Nutr Phys Act. 2017 Oct 8;14(1):137. doi: 10.1186/s12966-017-0570-3.
7
The use of wearable cameras in assessing children's dietary intake and behaviours in China.
Appetite. 2019 Aug 1;139:1-7. doi: 10.1016/j.appet.2019.03.032. Epub 2019 Apr 1.
8
Children's healthy and unhealthy beverage availability, purchase and consumption: A wearable camera study.
Appetite. 2019 Feb 1;133:240-251. doi: 10.1016/j.appet.2018.11.004. Epub 2018 Nov 20.

本文引用的文献

3
Explainable AI: A Review of Machine Learning Interpretability Methods.
Entropy (Basel). 2020 Dec 25;23(1):18. doi: 10.3390/e23010018.
4
Emerging trends of technology-based dietary assessment: a perspective study.
Eur J Clin Nutr. 2021 Apr;75(4):582-587. doi: 10.1038/s41430-020-00779-0. Epub 2020 Oct 20.
5
Real-Time Food Intake Monitoring Using Wearable Egocnetric Camera.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:4191-4195. doi: 10.1109/EMBC44109.2020.9175497.
6
Using wearable cameras to monitor eating and drinking behaviours during transport journeys.
Eur J Nutr. 2021 Jun;60(4):1875-1885. doi: 10.1007/s00394-020-02380-4. Epub 2020 Sep 4.
7
"Automatic Ingestion Monitor Version 2" - A Novel Wearable Device for Automatic Food Intake Detection and Passive Capture of Food Images.
IEEE J Biomed Health Inform. 2021 Feb;25(2):568-576. doi: 10.1109/JBHI.2020.2995473. Epub 2021 Feb 5.
8
Food store environment examination - FoodSee: a new method to study the food store environment using wearable cameras.
Glob Health Promot. 2020 Sep;27(3):73-81. doi: 10.1177/1757975919859575. Epub 2019 Aug 26.
9
10
Automatic food detection in egocentric images using artificial intelligence technology.
Public Health Nutr. 2019 May;22(7):1168-1179. doi: 10.1017/S1368980018000538. Epub 2018 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验