Suppr超能文献

基于深度学习和可穿戴相机的方法识别 2 型糖尿病及合并症患者的日常活动。

Identifying daily activities of patient work for type 2 diabetes and co-morbidities: a deep learning and wearable camera approach.

机构信息

Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, New South Wales, Australia.

出版信息

J Am Med Inform Assoc. 2022 Jul 12;29(8):1400-1408. doi: 10.1093/jamia/ocac071.

Abstract

OBJECTIVE

People are increasingly encouraged to self-manage their chronic conditions; however, many struggle to practise it effectively. Most studies that investigate patient work (ie, tasks involved in self-management and contexts influencing such tasks) rely on self-reports, which are subject to recall and other biases. Few studies use wearable cameras and deep learning to capture and classify patient work activities automatically.

MATERIALS AND METHODS

We propose a deep learning approach to classify activities of patient work collected from wearable cameras, thereby studying self-management routines more effectively. Twenty-six people with type 2 diabetes and comorbidities wore a wearable camera for a day, generating more than 400 h of video across 12 daily activities. To classify these video images, a weighted ensemble network that combines Linear Discriminant Analysis, Deep Convolutional Neural Networks, and Object Detection algorithms is developed. Performance of our model is assessed using Top-1 and Top-5 metrics, compared against manual classification conducted by 2 independent researchers.

RESULTS

Across 12 daily activities, our model achieved on average the best Top-1 and Top-5 scores of 81.9 and 86.8, respectively. Our model also outperformed other non-ensemble techniques in terms of Top-1 and Top-5 scores for most activity classes, demonstrating the superiority of leveraging weighted ensemble techniques.

CONCLUSIONS

Deep learning can be used to automatically classify daily activities of patient work collected from wearable cameras with high levels of accuracy. Using wearable cameras and a deep learning approach can offer an alternative approach to investigate patient work, one not subjected to biases commonly associated with self-report methods.

摘要

目的

人们越来越多地被鼓励自我管理慢性疾病;然而,许多人难以有效地进行实践。大多数研究患者工作(即自我管理所涉及的任务和影响这些任务的背景)都依赖于自我报告,这容易受到回忆和其他偏差的影响。很少有研究使用可穿戴相机和深度学习来自动捕捉和分类患者工作活动。

材料和方法

我们提出了一种深度学习方法来对可穿戴相机采集的患者工作活动进行分类,从而更有效地研究自我管理常规。26 名 2 型糖尿病合并症患者佩戴了可穿戴相机一天,生成了超过 400 小时的 12 项日常活动视频。为了对这些视频图像进行分类,开发了一个结合线性判别分析、深度卷积神经网络和目标检测算法的加权集成网络。我们使用 Top-1 和 Top-5 指标评估模型的性能,并与由 2 位独立研究人员进行的手动分类进行比较。

结果

在 12 项日常活动中,我们的模型平均达到了最佳的 Top-1 和 Top-5 分数,分别为 81.9 和 86.8。在大多数活动类别中,我们的模型在 Top-1 和 Top-5 分数方面也优于其他非集成技术,这表明利用加权集成技术具有优越性。

结论

深度学习可用于从可穿戴相机自动分类患者工作的日常活动,具有很高的准确性。使用可穿戴相机和深度学习方法可以提供一种替代方法来研究患者工作,这种方法不会受到自我报告方法常见的偏差的影响。

相似文献

本文引用的文献

4
Patient Work and Their Contexts: Scoping Review.患者工作及其背景:范围综述
J Med Internet Res. 2020 Jun 2;22(6):e16656. doi: 10.2196/16656.
5
Review on Smart Electro-Clothing Systems (SeCSs).智能电子服装系统(SeCSs)综述。
Sensors (Basel). 2020 Jan 21;20(3):587. doi: 10.3390/s20030587.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验