Suppr超能文献

合作与对立分子程序的整合驱动与学习相关的行为可塑性。

Integration of cooperative and opposing molecular programs drives learning-associated behavioral plasticity.

机构信息

Department of Cell and Developmental Biology; University of Pennsylvania, Perelman School of Medicine; Philadelphia, Pennsylvania, United States of America.

Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America.

出版信息

PLoS Genet. 2023 Mar 27;19(3):e1010650. doi: 10.1371/journal.pgen.1010650. eCollection 2023 Mar.

Abstract

Habituation is a foundational learning process critical for animals to adapt their behavior to changes in their sensory environment. Although habituation is considered a simple form of learning, the identification of a multitude of molecular pathways including several neurotransmitter systems that regulate this process suggests an unexpected level of complexity. How the vertebrate brain integrates these various pathways to accomplish habituation learning, whether they act independently or intersect with one another, and whether they act via divergent or overlapping neural circuits has remained unclear. To address these questions, we combined pharmacogenetic pathway analysis with unbiased whole-brain activity mapping using the larval zebrafish. Based on our findings, we propose five distinct molecular modules for the regulation of habituation learning and identify a set of molecularly defined brain regions associated with four of the five modules. Moreover, we find that in module 1 the palmitoyltransferase Hip14 cooperates with dopamine and NMDA signaling to drive habituation, while in module 3 the adaptor protein complex subunit Ap2s1 drives habituation by antagonizing dopamine signaling, revealing two distinct and opposing roles for dopaminergic neuromodulation in the regulation of behavioral plasticity. Combined, our results define a core set of distinct modules that we propose act in concert to regulate habituation-associated plasticity, and provide compelling evidence that even seemingly simple learning behaviors in a compact vertebrate brain are regulated by a complex and overlapping set of molecular mechanisms.

摘要

习惯化是一种基础性的学习过程,对于动物适应其感官环境的变化至关重要。尽管习惯化被认为是一种简单的学习形式,但许多分子途径的识别,包括几种调节这一过程的神经递质系统,表明其具有出乎意料的复杂性。脊椎动物大脑如何整合这些不同的途径来完成习惯化学习,它们是独立作用还是相互交叉,以及它们是通过发散还是重叠的神经回路起作用,这些问题仍然不清楚。为了解决这些问题,我们结合了遗传药理学途径分析和使用幼虫斑马鱼的无偏全脑活动映射。基于我们的发现,我们提出了五个不同的分子模块来调节习惯化学习,并确定了一组与五个模块中的四个模块相关的分子定义的脑区。此外,我们发现,在模块 1 中,棕榈酰转移酶 Hip14 与多巴胺和 NMDA 信号一起驱动习惯化,而在模块 3 中,衔接蛋白复合物亚基 Ap2s1 通过拮抗多巴胺信号驱动习惯化,揭示了多巴胺能神经调制在调节行为可塑性中的两个截然不同且相反的作用。总之,我们的研究结果定义了一组核心的不同模块,我们提出这些模块协同作用以调节与习惯化相关的可塑性,并提供了令人信服的证据,表明即使是在紧凑的脊椎动物大脑中看似简单的学习行为,也是由复杂且重叠的分子机制调节的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0637/10079226/1a9e25f847cd/pgen.1010650.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验