Suppr超能文献

准确、高效的实时片上尖峰分选的最低要求。

Minimum requirements for accurate and efficient real-time on-chip spike sorting.

机构信息

Centre for Systems Neuroscience, University of Leicester, 9 Salisbury Road, LE1 7QR, United Kingdom.

Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ, United Kingdom.

出版信息

J Neurosci Methods. 2014 Jun 15;230:51-64. doi: 10.1016/j.jneumeth.2014.04.018. Epub 2014 Apr 24.

Abstract

BACKGROUND

Extracellular recordings are performed by inserting electrodes in the brain, relaying the signals to external power-demanding devices, where spikes are detected and sorted in order to identify the firing activity of different putative neurons. A main caveat of these recordings is the necessity of wires passing through the scalp and skin in order to connect intracortical electrodes to external amplifiers. The aim of this paper is to evaluate the feasibility of an implantable platform (i.e., a chip) with the capability to wirelessly transmit the neural signals and perform real-time on-site spike sorting.

NEW METHOD

We computationally modelled a two-stage implementation for online, robust, and efficient spike sorting. In the first stage, spikes are detected on-chip and streamed to an external computer where mean templates are created and sent back to the chip. In the second stage, spikes are sorted in real-time through template matching.

RESULTS

We evaluated this procedure using realistic simulations of extracellular recordings and describe a set of specifications that optimise performance while keeping to a minimum the signal requirements and the complexity of the calculations.

COMPARISON WITH EXISTING METHODS

A key bottleneck for the development of long-term BMIs is to find an inexpensive method for real-time spike sorting. Here, we simulated a solution to this problem that uses both offline and online processing of the data.

CONCLUSIONS

Hardware implementations of this method therefore enable low-power long-term wireless transmission of multiple site extracellular recordings, with application to wireless BMIs or closed-loop stimulation designs.

摘要

背景

通过将电极插入大脑来进行细胞外记录,将信号传输到外部耗电设备,在该设备中检测和分类尖峰,以识别不同假定神经元的放电活动。这些记录的一个主要问题是需要通过头皮和皮肤将内部皮质电极连接到外部放大器的电线。本文的目的是评估一种具有无线传输神经信号和实时现场尖峰分类能力的植入式平台(即芯片)的可行性。

新方法

我们对在线、稳健和高效的尖峰分类的两阶段实现进行了计算建模。在第一阶段,在芯片上检测尖峰,并将其流式传输到外部计算机,在外部计算机上创建均值模板并将其发送回芯片。在第二阶段,通过模板匹配实时对尖峰进行分类。

结果

我们使用细胞外记录的现实模拟评估了此过程,并描述了一组规格,这些规格在最小化信号要求和计算复杂性的同时优化了性能。

与现有方法的比较

长期 BMI 发展的一个关键瓶颈是找到实时尖峰分类的廉价方法。在这里,我们模拟了解决此问题的一种解决方案,该解决方案同时使用离线和在线处理数据。

结论

该方法的硬件实现因此能够实现多个部位细胞外记录的低功耗长期无线传输,适用于无线 BMI 或闭环刺激设计。

相似文献

1
Minimum requirements for accurate and efficient real-time on-chip spike sorting.准确、高效的实时片上尖峰分选的最低要求。
J Neurosci Methods. 2014 Jun 15;230:51-64. doi: 10.1016/j.jneumeth.2014.04.018. Epub 2014 Apr 24.
3
Frameworks for Efficient Brain-Computer Interfacing.高效脑机接口的框架。
IEEE Trans Biomed Circuits Syst. 2019 Dec;13(6):1714-1722. doi: 10.1109/TBCAS.2019.2947130. Epub 2019 Oct 14.
4
Realistic simulation of extracellular recordings.体外记录的真实模拟。
J Neurosci Methods. 2009 Nov 15;184(2):285-93. doi: 10.1016/j.jneumeth.2009.08.017. Epub 2009 Aug 22.
6
An Efficient Hardware Architecture for Template Matching-Based Spike Sorting.基于模板匹配的 Spike 排序的高效硬件架构。
IEEE Trans Biomed Circuits Syst. 2019 Jun;13(3):481-492. doi: 10.1109/TBCAS.2019.2907882. Epub 2019 Mar 27.

引用本文的文献

4
HTsort: Enabling Fast and Accurate Spike Sorting on Multi-Electrode Arrays.HTsort:实现多电极阵列上快速准确的尖峰分类
Front Comput Neurosci. 2021 Jun 21;15:657151. doi: 10.3389/fncom.2021.657151. eCollection 2021.
5
Low-Impedance 3D PEDOT:PSS Ultramicroelectrodes.低阻抗3D聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸盐超微电极
Front Neurosci. 2020 May 19;14:405. doi: 10.3389/fnins.2020.00405. eCollection 2020.
8
Filter based phase distortions in extracellular spikes.细胞外尖峰信号中基于滤波器的相位失真。
PLoS One. 2017 Mar 30;12(3):e0174790. doi: 10.1371/journal.pone.0174790. eCollection 2017.
9
Decoding Local Field Potentials for Neural Interfaces.解码神经接口的局部场电位。
IEEE Trans Neural Syst Rehabil Eng. 2017 Oct;25(10):1705-1714. doi: 10.1109/TNSRE.2016.2612001. Epub 2016 Nov 14.

本文引用的文献

4
A detailed and fast model of extracellular recordings.详细而快速的细胞外记录模型。
Neural Comput. 2013 May;25(5):1191-212. doi: 10.1162/NECO_a_00433. Epub 2013 Mar 7.
6
An FPGA-based platform for accelerated offline spike sorting.基于 FPGA 的加速离线尖峰分类平台。
J Neurosci Methods. 2013 Apr 30;215(1):1-11. doi: 10.1016/j.jneumeth.2013.01.026. Epub 2013 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验