Zhao Yu, Wang Shengjie, Wei Zongchen, Qiu Shiming, Zhou Guofu, He Jr-Hau, Xu Xuezhu
Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.
Chongzuo Key Laboratory of Comprehensive Utilization Technology of Manganese Resources, Guangxi Key Laboratory for High-value Utilization of Manganese Resources, College of Chemistry and Biological Engineering, Guangxi Minzu Normal University, Chongzuo, Guangxi, 532200, China.
Adv Sci (Weinh). 2025 Jul;12(28):e00820. doi: 10.1002/advs.202500820. Epub 2025 May 21.
Nanotechnology has emerged as a transformative force, enabling the manipulation and engineering of materials at the nanoscale level, which has led to the discovery and development of novel materials with unique properties and functionalities. Janus cellulose nanomaterials, a product of nanotechnology, have attracted significant attention. This article aims to address the current lack of fundamental mechanistic understanding in Janus cellulose by investigating the intrinsic relationship between structural design and functional performance. Specifically, it begins by elucidating the construction principles of Janus cellulose nanomaterials, with a particular focus on how their asymmetric architectures impart anisotropic physicochemical properties, such as interfacial tension modulation, directional interactions, and selective transport. By integrating multiscale modeling approaches-including molecular dynamics simulations and density functional theory calculations-the underlying interfacial behaviors and assembly pathways are revealed, providing theoretical insight into their conformational stability and dynamic response mechanisms. It also explores how surface functionalization and selective chemical modification strategies can be leveraged to finetune hydrophilicity/hydrophobicity balance and interfacial activity, thereby enabling precise control over Janus cellulose interface configuration and functional attributes. On this basis, it further examines non-covalent driving forces-including electrostatic interactions, van der Waals forces, and hydrogen bonding-within the self-assembly process, and systematically maps the relationship between assembly conditions and structural evolution. This work establishes a comprehensive structure-driving force-assembly process-property framework, offering theoretical support and design guidance for the development of high-performance Janus cellulose nanomaterials in advanced applications such as flexible electronics, smart sensing systems, controlled drug delivery, and energy conversion and storage.
纳米技术已成为一股变革力量,能够在纳米尺度上对材料进行操控和工程设计,从而促成了具有独特性能和功能的新型材料的发现与开发。Janus纤维素纳米材料作为纳米技术的产物,已引起了广泛关注。本文旨在通过研究结构设计与功能性能之间的内在关系,解决目前对Janus纤维素基本机理认识不足的问题。具体而言,文章首先阐明Janus纤维素纳米材料的构建原理,特别关注其不对称结构如何赋予各向异性的物理化学性质,如界面张力调制、定向相互作用和选择性传输。通过整合多尺度建模方法,包括分子动力学模拟和密度泛函理论计算,揭示了潜在的界面行为和组装途径,为其构象稳定性和动态响应机制提供了理论见解。文章还探讨了如何利用表面功能化和选择性化学改性策略来微调亲水性/疏水性平衡和界面活性,从而实现对Janus纤维素界面构型和功能属性的精确控制。在此基础上,文章进一步研究了自组装过程中的非共价驱动力,包括静电相互作用、范德华力和氢键,并系统地绘制了组装条件与结构演化之间的关系。这项工作建立了一个全面的结构-驱动力-组装过程-性能框架,为在柔性电子、智能传感系统、可控药物递送以及能量转换与存储等先进应用中开发高性能Janus纤维素纳米材料提供了理论支持和设计指导。