Anand Aditya, Chandana Manjunatha, Ghosh Sourav, Das Rahul, Singh Nalini, Vaishalli Pradeep Mini, Gantasala Nagavara Prasad, Padmanaban Govindarajan, Nagaraj Viswanathan Arun
Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India.
Regional Centre for Biotechnology, Faridabad, Haryana, India.
Microbiol Spectr. 2023 Mar 28;11(2):e0494322. doi: 10.1128/spectrum.04943-22.
The food vacuole plays a central role in the blood stage of parasite development by digesting host hemoglobin acquired from red blood cells and detoxifying the host heme released during hemoglobin digestion into hemozoin. Blood-stage parasites undergo periodic schizont bursts, releasing food vacuoles containing hemozoin. Clinical studies in malaria-infected patients and animal studies have shown the association of hemozoin with disease pathogenesis and abnormal host immune responses in malaria. Here, we perform a detailed characterization of putative Plasmodium berghei amino acid transporter 1 localized in the food vacuole to understand its significance in the malaria parasite. We show that the targeted deletion of amino acid transporter 1 in Plasmodium berghei leads to a swollen food vacuole phenotype with the accumulation of host hemoglobin-derived peptides. Plasmodium berghei amino acid transporter 1-knockout parasites produce less hemozoin, and the hemozoin crystals display a thin morphology compared with wild-type parasites. The knockout parasites show reduced sensitivity to chloroquine and amodiaquine by showing recrudescence. More importantly, mice infected with the knockout parasites are protected from cerebral malaria and display reduced neuronal inflammation and cerebral complications. Genetic complementation of the knockout parasites restores the food vacuole morphology with hemozoin levels similar to that of wild-type parasites, causing cerebral malaria in the infected mice. The knockout parasites also show a significant delay in male gametocyte exflagellation. Our findings highlight the significance of amino acid transporter 1 in food vacuole functionality and its association with malaria pathogenesis and gametocyte development. Food vacuoles of the malaria parasite are involved in the degradation of red blood cell hemoglobin. The amino acids derived from hemoglobin degradation support parasite growth, and the heme released is detoxified into hemozoin. Antimalarials such as quinolines target hemozoin formation in the food vacuole. Food vacuole transporters transport hemoglobin-derived amino acids and peptides from the food vacuole to the parasite cytosol. Such transporters are also associated with drug resistance. Here, we show that the deletion of amino acid transporter 1 in Plasmodium berghei leads to swollen food vacuoles with the accumulation of hemoglobin-derived peptides. The transporter-deleted parasites generate less hemozoin with thin crystal morphology and show reduced sensitivity to quinolines. Mice infected with transporter-deleted parasites are protected from cerebral malaria. There is also a delay in male gametocyte exflagellation, affecting transmission. Our findings uncover the functional significance of amino acid transporter 1 in the life cycle of the malaria parasite.
食物泡在疟原虫发育的血液阶段起着核心作用,它通过消化从红细胞获取的宿主血红蛋白,并将血红蛋白消化过程中释放的宿主血红素解毒为疟色素。血液阶段的疟原虫会周期性地进行裂殖体破裂,释放出含有疟色素的食物泡。对疟疾感染患者的临床研究和动物研究表明,疟色素与疟疾的疾病发病机制以及异常的宿主免疫反应有关。在此,我们对定位于食物泡中的伯氏疟原虫假定氨基酸转运蛋白1进行了详细表征,以了解其在疟原虫中的重要性。我们发现,伯氏疟原虫中氨基酸转运蛋白1的靶向缺失会导致食物泡肿胀,伴有宿主血红蛋白衍生肽的积累。伯氏疟原虫氨基酸转运蛋白1基因敲除的疟原虫产生的疟色素较少,与野生型疟原虫相比,疟色素晶体呈现出薄的形态。基因敲除的疟原虫对氯喹和氨酚喹的敏感性降低,出现复发。更重要的是,感染基因敲除疟原虫的小鼠可免受脑型疟疾的侵害,且神经元炎症和脑部并发症减少。基因敲除疟原虫的基因互补恢复了食物泡形态,疟色素水平与野生型疟原虫相似,导致感染小鼠发生脑型疟疾。基因敲除的疟原虫在雄配子体逸出方面也出现显著延迟。我们的研究结果突出了氨基酸转运蛋白1在食物泡功能中的重要性及其与疟疾发病机制和配子体发育的关联。疟原虫的食物泡参与红细胞血红蛋白的降解。血红蛋白降解产生的氨基酸支持疟原虫生长,释放的血红素被解毒为疟色素。喹啉类等抗疟药物靶向食物泡中的疟色素形成。食物泡转运蛋白将血红蛋白衍生的氨基酸和肽从食物泡转运到疟原虫胞质溶胶中。此类转运蛋白也与耐药性有关。在此,我们表明伯氏疟原虫中氨基酸转运蛋白1的缺失会导致食物泡肿胀,伴有血红蛋白衍生肽的积累。转运蛋白缺失的疟原虫产生的疟色素较少,晶体形态较薄,对喹啉类药物的敏感性降低。感染转运蛋白缺失疟原虫的小鼠可免受脑型疟疾的侵害。雄配子体逸出也出现延迟,影响传播。我们的研究结果揭示了氨基酸转运蛋白1在疟原虫生命周期中的功能重要性。