Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
College of Arts and Sciences, Boston University, Boston, Massachusetts.
Mol Cancer Res. 2023 Jun 1;21(6):605-613. doi: 10.1158/1541-7786.MCR-22-0593.
UNLABELLED: Multiplex fluorescence IHC (mfIHC) approaches were yet either limited to six markers or limited to a small tissue size that hampers translational studies on large tissue microarray cohorts. Here we have developed a BLEACH&STAIN mfIHC method that enabled the simultaneous analysis of 15 biomarkers (PD-L1, PD-1, CTLA-4, panCK, CD68, CD163, CD11c, iNOS, CD3, CD8, CD4, FOXP3, CD20, Ki67, and CD31) in 3,098 tumor samples from 44 different carcinoma entities within one week. To facilitate automated immune checkpoint quantification on tumor and immune cells and study its spatial interplay an artificial intelligence-based framework incorporating 17 different deep-learning systems was established. Unsupervised clustering showed that the three PD-L1 phenotypes (PD-L1+ tumor and immune cells, PD-L1+ immune cells, PD-L1-) were either inflamed or noninflamed. In inflamed PD-L1+patients, spatial analysis revealed that an elevated level of intratumoral M2 macrophages as well as CD11c+ dendritic cell (DC) infiltration (P < 0.001 each) was associated with a high CD3+ CD4± CD8± FOXP3± T-cell exclusion and a high PD-1 expression on T cells (P < 0.001 each). In breast cancer, the PD-L1 fluorescence intensity on tumor cells showed a significantly higher predictive performance for overall survival (OS; AUC, 0.72, P < 0.001) compared with the commonly used percentage of PD-L1+ tumor cells (AUC, 0.54). In conclusion, our deep-learning-based BLEACH&STAIN framework facilitates rapid and comprehensive assessment of more than 60 spatially orchestrated immune cell subpopulations and its prognostic relevance. IMPLICATIONS: The development of an easy-to-use high-throughput 15+1 multiplex fluorescence approach facilitates the in-depth understanding of the immune tumor microenvironment (TME) and enables to study the prognostic relevance of more than 130 immune cell subpopulations.
未标记:多重荧光免疫组化(mfIHC)方法要么只能检测六个标志物,要么只能检测小组织大小,这阻碍了对大组织微阵列队列的转化研究。在这里,我们开发了一种 BLEACH&STAIN mfIHC 方法,能够在一周内同时分析 3098 个肿瘤样本中的 15 个生物标志物(PD-L1、PD-1、CTLA-4、panCK、CD68、CD163、CD11c、iNOS、CD3、CD8、CD4、FOXP3、CD20、Ki67 和 CD31),这些样本来自 44 种不同的癌实体。为了促进对肿瘤和免疫细胞的自动免疫检查点定量分析,并研究其空间相互作用,建立了一个基于人工智能的框架,其中包含 17 个不同的深度学习系统。无监督聚类表明,三种 PD-L1 表型(PD-L1+肿瘤和免疫细胞、PD-L1+免疫细胞、PD-L1-)要么是炎症性的,要么是非炎症性的。在炎症性 PD-L1+患者中,空间分析显示,肿瘤内 M2 巨噬细胞水平升高以及 CD11c+树突状细胞(DC)浸润(均 P<0.001)与高水平的 CD3+CD4±CD8±FOXP3±T 细胞排斥以及 T 细胞上的高 PD-1 表达有关(均 P<0.001)。在乳腺癌中,肿瘤细胞上的 PD-L1 荧光强度对总生存期(OS;AUC,0.72,P<0.001)的预测性能明显高于常用的 PD-L1+肿瘤细胞百分比(AUC,0.54)。总之,我们基于深度学习的 BLEACH&STAIN 框架促进了对 60 多个空间协调免疫细胞亚群的快速全面评估及其预后相关性。
意义:易于使用的高通量 15+1 多重荧光方法的开发有助于深入了解免疫肿瘤微环境(TME),并能够研究 130 多个免疫细胞亚群的预后相关性。
Gynecol Oncol. 2023-1
Eur J Breast Health. 2025-3-25