文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

乳腺癌护理的进展:人工智能和数字病理学在精准医学中的作用。

Advances in Breast Cancer Care: The Role of Artificial Intelligence and Digital Pathology in Precision Medicine.

作者信息

Dur Karasayar Ayşe Hümeyra, Kulaç İbrahim, Kapucuoğlu Nilgün

机构信息

Graduate School of Health Sciences, Koç University Faculty of Medicine, İstanbul, Turkey.

Department of Pathology, Başakşehir Çam and Sakura Hospital, İstanbul, Turkey.

出版信息

Eur J Breast Health. 2025 Mar 25;21(2):93-100. doi: 10.4274/ejbh.galenos.2025.2024-12-8. Epub 2025 Mar 3.


DOI:10.4274/ejbh.galenos.2025.2024-12-8
PMID:40028897
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11934827/
Abstract

Artificial intelligence (AI) and digital pathology are transforming breast cancer management by addressing the limitations inherent in traditional histopathological methods. The application of machine learning algorithms has enhanced the ability of AI systems to classify breast cancer subtypes, grade tumors, and quantify key biomarkers, thereby improving diagnostic accuracy and prognostic precision. Furthermore, AI-powered image analysis has demonstrated superiority in detecting lymph node metastases, contributing to more precise staging, treatment planning, and reduced evaluation time. The ability of AI to predict molecular markers, including human epidermal growth factor receptor 2 status, BRCA mutations and homologus recombination deficiency, offers substantial potential for the development of personalized treatment strategies. A collaborative approach between pathologists and AI systems is essential to fully harness the potential of this technology. Although AI provides automation and objective analysis, human expertise remains indispensable for the interpretation of results and clinical decision-making. This partnership is anticipated to transform breast cancer care by enhancing patient outcomes and optimizing treatment approaches.

摘要

人工智能(AI)和数字病理学正在通过解决传统组织病理学方法固有的局限性来改变乳腺癌的管理。机器学习算法的应用提高了人工智能系统对乳腺癌亚型进行分类、对肿瘤分级以及量化关键生物标志物的能力,从而提高了诊断准确性和预后精度。此外,人工智能驱动的图像分析在检测淋巴结转移方面已显示出优势,有助于更精确的分期、治疗规划并缩短评估时间。人工智能预测分子标志物的能力,包括人类表皮生长因子受体2状态、BRCA突变和同源重组缺陷,为个性化治疗策略的开发提供了巨大潜力。病理学家和人工智能系统之间的协作方法对于充分发挥这项技术的潜力至关重要。尽管人工智能提供了自动化和客观分析,但人类专业知识对于结果解释和临床决策仍然不可或缺。这种合作关系有望通过改善患者预后和优化治疗方法来改变乳腺癌护理。

相似文献

[1]
Advances in Breast Cancer Care: The Role of Artificial Intelligence and Digital Pathology in Precision Medicine.

Eur J Breast Health. 2025-3-25

[2]
Early Breast Cancer Risk Assessment: Integrating Histopathology with Artificial Intelligence.

Cancers (Basel). 2024-5-23

[3]
Artificial intelligence's impact on breast cancer pathology: a literature review.

Diagn Pathol. 2024-2-22

[4]
Augmented interpretation of HER2, ER, and PR in breast cancer by artificial intelligence analyzer: enhancing interobserver agreement through a reader study of 201 cases.

Breast Cancer Res. 2024-2-23

[5]
Artificial Intelligence in Thoracic Surgery: A Review Bridging Innovation and Clinical Practice for the Next Generation of Surgical Care.

J Clin Med. 2025-4-16

[6]
Impact of artificial intelligence on prognosis, shared decision-making, and precision medicine for patients with inflammatory bowel disease: a perspective and expert opinion.

Ann Med. 2023

[7]
Artificial intelligence in digital histopathology for predicting patient prognosis and treatment efficacy in breast cancer.

Expert Rev Mol Diagn. 2024-5

[8]
Artificial intelligence for breast cancer detection and its health technology assessment: A scoping review.

Comput Biol Med. 2025-1

[9]
The integration of artificial intelligence into clinical medicine: Trends, challenges, and future directions.

Dis Mon. 2025-3-25

[10]
Artificial intelligence entering the pathology arena in oncology: current applications and future perspectives.

Ann Oncol. 2025-4-28

本文引用的文献

[1]
Deep Learning Artificial Intelligence Predicts Homologous Recombination Deficiency and Platinum Response From Histologic Slides.

J Clin Oncol. 2024-10-20

[2]
Deep learning framework for comprehensive molecular and prognostic stratifications of triple-negative breast cancer.

Fundam Res. 2022-6-29

[3]
Artificial intelligence enhances whole-slide interpretation of PD-L1 CPS in triple-negative breast cancer: A multi-institutional ring study.

Histopathology. 2024-9

[4]
AI improves accuracy, agreement and efficiency of pathologists for Ki67 assessments in breast cancer.

Sci Rep. 2024-1-13

[5]
Automated Prognosis Marker Assessment in Breast Cancers Using BLEACH&STAIN Multiplexed Immunohistochemistry.

Biomedicines. 2023-11-29

[6]
Artificial Intelligence-Aided Diagnosis of Breast Cancer Lymph Node Metastasis on Histologic Slides in a Digital Workflow.

Mod Pathol. 2023-8

[7]
: An Efficient Deep Learning Architecture to Predict Gene Expression from Breast Cancer Histopathology Images.

Cancers (Basel). 2023-4-30

[8]
Value of Artificial Intelligence in Evaluating Lymph Node Metastases.

Cancers (Basel). 2023-4-26

[9]
Fast cancer metastasis location based on dual magnification hard example mining network in whole-slide images.

Comput Biol Med. 2023-5

[10]
BLEACH&STAIN 15-marker Multiplexed Imaging in 3,098 Human Carcinomas Reveals Six Major PD-L1-driven Immune Phenotypes with Distinct Spatial Orchestration.

Mol Cancer Res. 2023-6-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索