, Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain.
Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain.
ACS Appl Mater Interfaces. 2023 Apr 12;15(14):17726-17741. doi: 10.1021/acsami.3c02729. Epub 2023 Mar 28.
Herein, we use two exemplary superparamagnetic iron oxide multicore nanoparticles (SPIONs) to illustrate the significant influence of slightly different physicochemical properties on the cellular and molecular processes that define SPION interplay with primary neural cells. Particularly, we have designed two different SPION structures, NFA (i.e., a denser multicore structure accompanied by a slightly less negative surface charge and a higher magnetic response) and NFD (i.e., a larger surface area and more negatively charged), and identified specific biological responses dependent on SPION type, concentration, exposure time, and magnetic actuation. Interestingly, NFA SPIONs display a higher cell uptake, likely driven by their less negative surface and smaller protein corona, more significantly impacting cell viability and complexity. The tight contact of both SPIONs with neural cell membranes results in the significant augmentation of phosphatidylcholine, phosphatidylserine, and sphingomyelin and the reduction of free fatty acids and triacylglycerides for both SPIONs. Nonetheless, NFD induces greater effects on lipids, especially under magnetic actuation, likely indicating a preferential membranal location and/or a tighter interaction with membrane lipids than NFA, in agreement with their lower cell uptake. From a functional perspective, these lipid changes correlate with an increase in plasma membrane fluidity, again larger for more negatively charged nanoparticles (NFD). Finally, the mRNA expression of iron-related genes such as and remains unaltered, while is only detected in SPION-treated cells. Taken together, these results demonstrate the substantial impact that minor physicochemical differences of nanomaterials may exert in the specific targeting of cellular and molecular processes. A denser multicore structure generated by autoclave-based production is accompanied by a slight difference in surface charge and magnetic properties that become decisive for the biological impact of these SPIONs. Their capacity to markedly modify the lipidic cell content makes them attractive as lipid-targetable nanomedicines.
在此,我们使用两种典型的超顺磁性氧化铁多核纳米粒子(SPIONs)来说明稍微不同的物理化学性质对定义 SPION 与原代神经细胞相互作用的细胞和分子过程的显著影响。特别地,我们设计了两种不同的 SPION 结构,NFA(即密度更高的多核结构,伴随着略微较低的表面电荷和更高的磁响应)和 NFD(即更大的表面积和更负的电荷),并确定了特定的生物学反应取决于 SPION 类型、浓度、暴露时间和磁场作用。有趣的是,NFA SPIONs 显示出更高的细胞摄取率,这可能是由于其表面带电量较低且蛋白冠较小,对细胞活力和复杂性的影响更为显著。两种 SPIONs 与神经细胞膜的紧密接触导致磷脂酰胆碱、磷脂酰丝氨酸和鞘磷脂显著增加,游离脂肪酸和三酰基甘油减少。然而,NFD 在脂质方面引起更大的影响,尤其是在磁场作用下,这可能表明其优先位于膜上位置和/或与膜脂质的相互作用比 NFA 更紧密,这与它们较低的细胞摄取率一致。从功能角度来看,这些脂质变化与质膜流动性的增加相关,带负电荷的纳米粒子(NFD)的流动性增加更大。最后,铁相关基因的 mRNA 表达如 和 保持不变,而 仅在 SPION 处理的细胞中检测到。总之,这些结果表明,纳米材料的微小物理化学差异可能对特定靶向细胞和分子过程产生重大影响。基于高压灭菌器生产的更密集的多核结构伴随着表面电荷和磁性的微小差异,这些差异对这些 SPIONs 的生物学影响至关重要。它们显著改变细胞脂质含量的能力使它们成为有吸引力的脂质靶向纳米药物。