文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

影响纳米颗粒生物学效应的一些因素的最新综述。

An updated overview of some factors that influence the biological effects of nanoparticles.

作者信息

Xuan Yang, Zhang Wenliang, Zhu Xinjiang, Zhang Shubiao

机构信息

Key Laboratory of Biological Resources and Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning, China.

Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Dalian, Liaoning, China.

出版信息

Front Bioeng Biotechnol. 2023 Aug 30;11:1254861. doi: 10.3389/fbioe.2023.1254861. eCollection 2023.


DOI:10.3389/fbioe.2023.1254861
PMID:37711450
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10499358/
Abstract

Nanoparticles (NPs) can be extremely effective in the early diagnosis and treatment of cancer due to their properties. The nanotechnology industry is developing rapidly. The number of multifunctional NPs has increased in the market and hundreds of NPs are in various stages of preclinical and clinical development. Thus, the mechanism underlying the effects of NPs on biological systems has received much attention. After NPs enter the body, they interact with plasma proteins, tumour cell receptors, and small biological molecules. This interaction is closely related to the size, shape, chemical composition and surface modification properties of NPs. In this review, the effects of the size, shape, chemical composition and surface modification of NPs on the biological effects of NPs were summarised, including the mechanism through which NPs enter cells, the resulting oxidative stress response, and the interaction with proteins. This review of the biological effects of NPs can not only provide theoretical support for the preparation of safer and more efficient NPs but also lay the foundation for their clinical application.

摘要

纳米颗粒(NPs)因其特性在癌症的早期诊断和治疗中可能极其有效。纳米技术产业正在迅速发展。市场上多功能纳米颗粒的数量有所增加,数百种纳米颗粒正处于临床前和临床开发的各个阶段。因此,纳米颗粒对生物系统作用的潜在机制受到了广泛关注。纳米颗粒进入人体后,会与血浆蛋白、肿瘤细胞受体和生物小分子相互作用。这种相互作用与纳米颗粒的大小、形状、化学成分和表面修饰特性密切相关。在这篇综述中,总结了纳米颗粒的大小、形状、化学成分和表面修饰对其生物学效应的影响,包括纳米颗粒进入细胞的机制、由此产生的氧化应激反应以及与蛋白质的相互作用。对纳米颗粒生物学效应的这一综述不仅可为制备更安全、更高效的纳米颗粒提供理论支持,也为其临床应用奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a14/10499358/ecd447126f08/fbioe-11-1254861-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a14/10499358/863aa6131f37/FBIOE_fbioe-2023-1254861_wc_abs.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a14/10499358/8432d0eb20e1/fbioe-11-1254861-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a14/10499358/e41456e7b7d3/fbioe-11-1254861-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a14/10499358/d8392169b481/fbioe-11-1254861-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a14/10499358/9bb85602fa4b/fbioe-11-1254861-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a14/10499358/bad34c605d2a/fbioe-11-1254861-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a14/10499358/ecd447126f08/fbioe-11-1254861-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a14/10499358/863aa6131f37/FBIOE_fbioe-2023-1254861_wc_abs.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a14/10499358/8432d0eb20e1/fbioe-11-1254861-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a14/10499358/e41456e7b7d3/fbioe-11-1254861-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a14/10499358/d8392169b481/fbioe-11-1254861-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a14/10499358/9bb85602fa4b/fbioe-11-1254861-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a14/10499358/bad34c605d2a/fbioe-11-1254861-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a14/10499358/ecd447126f08/fbioe-11-1254861-g006.jpg

相似文献

[1]
An updated overview of some factors that influence the biological effects of nanoparticles.

Front Bioeng Biotechnol. 2023-8-30

[2]
Understanding the Factors Influencing Chitosan-Based Nanoparticles-Protein Corona Interaction and Drug Delivery Applications.

Molecules. 2020-10-16

[3]
The protein corona and its effects on nanoparticle-based drug delivery systems.

Acta Biomater. 2021-7-15

[4]
How protein coronas determine the fate of engineered nanoparticles in biological environment.

Arh Hig Rada Toksikol. 2017-12-20

[5]
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Phys Biol. 2013-8

[6]
The interaction mechanism of plasma iron transport protein transferrin with nanoparticles.

Int J Biol Macromol. 2023-6-15

[7]
The impact of protein corona on the behavior and targeting capability of nanoparticle-based delivery system.

Int J Pharm. 2018-10-9

[8]
In Situ Characterization of Protein Adsorption onto Nanoparticles by Fluorescence Correlation Spectroscopy.

Acc Chem Res. 2017-2-1

[9]
Protein corona modulates interaction of spiky nanoparticles with lipid bilayers.

J Colloid Interface Sci. 2021-12

[10]
Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna.

J Proteomics. 2016-3-30

引用本文的文献

[1]
A review of combined imaging and therapeutic applications based on MNMs.

Front Chem. 2025-5-26

[2]
Dynamic QSAR modeling for predicting in vivo genotoxicity and inflammation induced by nanoparticles and advanced materials: a time-dose-property/response approach.

J Nanobiotechnology. 2025-6-6

[3]
Size-dependent Nanoparticle Accumulation In Venous Malformations.

J Vasc Anom (Phila). 2024-12-6

[4]
Interaction of Micro- and Nanoplastics with Enzymes: The Case of Carbonic Anhydrase.

Int J Mol Sci. 2024-9-8

[5]
Breaking the barrier: Nanoparticle-enhanced radiotherapy as the new vanguard in brain tumor treatment.

Front Pharmacol. 2024-7-3

本文引用的文献

[1]
Improved Plasmonic Hot-Electron Capture in Au Nanoparticle/Polymeric Carbon Nitride by Pt Single Atoms for Broad-Spectrum Photocatalytic H Evolution.

Nanomicro Lett. 2023-5-20

[2]
Magnetic iron oxide nanoparticles for brain imaging and drug delivery.

Adv Drug Deliv Rev. 2023-6

[3]
Surface Rearrangement and Sublimation Kinetics of Supported Gold Nanoparticle Catalysts.

ACS Nano. 2023-5-9

[4]
Cellular and Molecular Processes Are Differently Influenced in Primary Neural Cells by Slight Changes in the Physicochemical Properties of Multicore Magnetic Nanoparticles.

ACS Appl Mater Interfaces. 2023-4-12

[5]
Nanotoxicology and Nanomedicine: The Yin and Yang of Nano-Bio Interactions for the New Decade.

Nano Today. 2021-8

[6]
BSA-templated synthesis of Ir/Gd bimetallic oxide nanotheranostics for MR/CT imaging-guided photothermal and photodynamic synergistic therapy.

Nanoscale. 2023-3-2

[7]
Combined toxicity of micro/nanoplastics loaded with environmental pollutants to organisms and cells: Role, effects, and mechanism.

Environ Int. 2023-1

[8]
Stiffness-Transformable Nanoplatforms Responsive to the Tumor Microenvironment for Enhanced Tumor Therapeutic Efficacy.

Angew Chem Int Ed Engl. 2023-2-6

[9]
A novel interaction between extracellular vimentin and fibrinogen in fibrin formation.

Thromb Res. 2023-1

[10]
Coordination of MAPK and p53 dynamics in the cellular responses to DNA damage and oxidative stress.

Mol Syst Biol. 2022-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索