Gupta Rahul, Bouard Chloé, Kammerbauer Fabian, Ledesma-Martin J Omar, Bose Arnab, Kononenko Iryna, Martin Sylvain, Usé Perrine, Jakob Gerhard, Drouard Marc, Kläui Mathias
Institute of Physics, Johannes Gutenberg University Mainz, 55099, Mainz, Germany.
Antaios, 38240, Meylan, France.
Nat Commun. 2025 Jan 2;16(1):130. doi: 10.1038/s41467-024-55437-x.
Spin-Orbit Torque (SOT) Magnetic Random-Access Memory (MRAM) devices offer improved power efficiency, nonvolatility, and performance compared to static RAM, making them ideal, for instance, for cache memory applications. Efficient magnetization switching, long data retention, and high-density integration in SOT MRAM require ferromagnets (FM) with perpendicular magnetic anisotropy (PMA) combined with large torques enhanced by Orbital Hall Effect (OHE). We have engineered a PMA [Co/Ni] FM on selected OHE layers (Ru, Nb, Cr) and investigated the potential of theoretically predicted larger orbital Hall conductivity (OHC) to quantify the torque and switching current in OHE/[Co/Ni] stacks. Our results demonstrate a ~30% enhancement in damping-like torque efficiency with a positive sign for the Ru OHE layer compared to a pure Pt layer, accompanied by a ~20% reduction in switching current for Ru compared to pure Pt across more than 250 devices, leading to more than a 60% reduction in switching power. These findings validate the application of Ru in devices relevant to industrial contexts, supporting theoretical predictions regarding its superior OHC. This investigation highlights the potential of enhanced orbital torques to improve the performance of orbital-assisted SOT-MRAM, paving the way for next-generation memory technology.
与静态随机存取存储器相比,自旋轨道扭矩(SOT)磁随机存取存储器(MRAM)设备具有更高的功率效率、非易失性和性能,使其成为高速缓冲存储器应用等的理想选择。SOT MRAM中的高效磁化切换、长数据保持和高密度集成需要具有垂直磁各向异性(PMA)的铁磁体(FM),并结合由轨道霍尔效应(OHE)增强的大扭矩。我们在选定的OHE层(Ru、Nb、Cr)上设计了一种PMA [Co/Ni] FM,并研究了理论预测的更大轨道霍尔电导率(OHC)量化OHE/[Co/Ni]堆叠中扭矩和开关电流的潜力。我们的结果表明,与纯Pt层相比,Ru OHE层的类阻尼扭矩效率提高了约30%,且符号为正,在超过250个器件中,与纯Pt相比,Ru的开关电流降低了约20%,从而使开关功率降低了60%以上。这些发现验证了Ru在工业相关器件中的应用,支持了关于其卓越OHC的理论预测。这项研究突出了增强轨道扭矩在改善轨道辅助SOT-MRAM性能方面的潜力,为下一代存储技术铺平了道路。