Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, U.K.
Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester M13 9PT, U.K.
J Am Chem Soc. 2023 Apr 12;145(14):7768-7779. doi: 10.1021/jacs.2c06148. Epub 2023 Mar 28.
A yet unresolved challenge in structural biology is to quantify the conformational states of proteins underpinning function. This challenge is particularly acute for membrane proteins owing to the difficulties in stabilizing them for in vitro studies. To address this challenge, we present an integrative strategy that combines hydrogen deuterium exchange-mass spectrometry (HDX-MS) with ensemble modeling. We benchmark our strategy on wild-type and mutant conformers of XylE, a prototypical member of the ubiquitous Major Facilitator Superfamily (MFS) of transporters. Next, we apply our strategy to quantify conformational ensembles of XylE embedded in different lipid environments. Further application of our integrative strategy to substrate-bound and inhibitor-bound ensembles allowed us to unravel protein-ligand interactions contributing to the alternating access mechanism of secondary transport in atomistic detail. Overall, our study highlights the potential of integrative HDX-MS modeling to capture, accurately quantify, and subsequently visualize co-populated states of membrane proteins in association with mutations and diverse substrates and inhibitors.
结构生物学中尚未解决的一个挑战是量化与功能相关的蛋白质构象状态。由于体外研究中稳定它们存在困难,这个挑战对于膜蛋白来说尤为突出。为了解决这个挑战,我们提出了一种整合策略,将氘氢交换-质谱(HDX-MS)与整体建模相结合。我们在野生型和突变型 XylE 构象体上对我们的策略进行了基准测试,XylE 是普遍存在的主要易化剂超家族(MFS)转运蛋白的典型成员。接下来,我们将我们的策略应用于量化不同脂质环境中嵌入的 XylE 构象体。我们整合策略的进一步应用于结合底物和抑制剂的整体,使我们能够详细揭示蛋白质-配体相互作用,这些相互作用有助于二级转运的交替访问机制。总的来说,我们的研究强调了整合 HDX-MS 建模的潜力,可以准确地捕捉、量化,并随后可视化与突变和不同底物和抑制剂相关的膜蛋白的共占状态。