Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
Toxins (Basel). 2023 Mar 21;15(3):230. doi: 10.3390/toxins15030230.
Published data were used to model the transfer of ciguatoxins (CTX) across three trophic levels of a marine food chain on the Great Barrier Reef (GBR), Australia, to produce a mildly toxic common coral trout (), one of the most targeted food fishes on the GBR. Our model generated a 1.6 kg grouper with a flesh concentration of 0.1 µg/kg of Pacific-ciguatoxin-1 (P-CTX-1 = CTX1B) from 1.1 to 4.3 µg of P-CTX-1 equivalents (eq.) entering the food chain from 0.7 to 2.7 million benthic dinoflagellates ( sp.) producing 1.6 pg/cell of the P-CTX-1 precursor, P-CTX-4B (CTX4B). We simulated the food chain transfer of ciguatoxins via surgeonfishes by modelling feeding on turf algae. A feeding on ≥1000 /cm of turf algae accumulates sufficient toxin in <2 days that when preyed on, produces a 1.6 kg common coral trout with a flesh concentration of 0.1 µg/kg P-CTX-1. Our model shows that even transient blooms of highly ciguatoxic can generate ciguateric fishes. In contrast, sparse cell densities of ≤10 /cm are unlikely to pose a significant risk, at least in areas where the P-CTX-1 family of ciguatoxins predominate. The ciguatera risk from intermediate densities (100 cells/cm) is more difficult to assess, as it requires feeding times for surgeonfish (4-14 days) that overlap with turnover rates of turf algae that are grazed by herbivorous fishes, at least in regions such as the GBR, where stocks of herbivorous fishes are not impacted by fishing. We use our model to explore how the duration of ciguatoxic blooms, the type of ciguatoxins they produce, and fish feeding behaviours can produce differences in relative toxicities between trophic levels. Our simple model indicates thresholds for the design of risk and mitigation strategies for ciguatera and the variables that can be manipulated to explore alternate scenarios for the accumulation and transfer of P-CTX-1 analogues through marine food chains and, potentially, for other ciguatoxins in other regions, as more data become available.
利用已发表的数据,我们构建了一个模型,以研究澳大利亚大堡礁(GBR)海洋食物链中三个营养级别的雪卡毒素(CTX)转移情况,从而生产出一种低毒的普通珊瑚鱼(),这是 GBR 上最受关注的食用鱼类之一。我们的模型显示,从进入食物链的 0.7 到 270 万个底栖腰鞭毛藻( sp.)中产生的 1.1 到 4.3 微克太平洋雪卡毒素-1 当量(eq.)中,1.6 公斤石斑鱼的鱼肉中 CTX1B 的浓度为 0.1 微克/公斤。我们通过模拟以藻类为食的雀鲷的食物链转移,来模拟雪卡毒素的转移。当以 1000 片/cm 以上的藻类为食时,雀鲷在不到两天的时间内就会积累足够的毒素,当被捕食时,会产生 1.6 公斤鱼肉中 CTX1B 浓度为 0.1 微克/公斤的普通珊瑚鱼。我们的模型表明,即使是高度雪卡毒性的藻的短暂爆发也会产生雪卡鱼类中毒。相比之下,细胞密度≤10 /cm 不太可能构成重大风险,至少在以 P-CTX-1 家族雪卡毒素为主导的地区是如此。中等密度(~100 个细胞/cm)的雪卡毒素风险更难评估,因为这需要雀鲷的进食时间(4-14 天)与被草食性鱼类摄食的藻类周转率重叠,至少在大堡礁等地区是如此,在这些地区,草食性鱼类的数量不受捕捞的影响。我们利用模型来探讨雪卡藻的爆发持续时间、它们产生的雪卡毒素类型以及鱼类的摄食行为如何在营养级之间产生相对毒性的差异。我们的简单模型为设计雪卡毒素中毒风险和缓解策略提供了依据,并为探索通过海洋食物链积累和转移 P-CTX-1 类似物的替代方案以及在其他地区可能存在的其他雪卡毒素提供了依据,随着更多数据的出现,这些方案可以进行调整。