Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States.
Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States.
J Chem Inf Model. 2023 Apr 10;63(7):2196-2206. doi: 10.1021/acs.jcim.3c00069. Epub 2023 Mar 28.
The nation's opioid overdose deaths reached an all-time high in 2021. The majority of deaths are due to synthetic opioids represented by fentanyl. Naloxone, which is a FDA-approved reversal agent, antagonizes opioids through competitive binding at the μ-opioid receptor (mOR). Thus, knowledge of the opioid's residence time is important for assessing the effectiveness of naloxone. Here, we estimated the residence times (τ) of 15 fentanyl and 4 morphine analogs using metadynamics and compared them with the most recent measurement of the opioid kinetic, dissociation, and naloxone inhibitory constants (Mann et al. , , 1020-1232). Importantly, the microscopic simulations offered a glimpse at the common binding mechanism and molecular determinants of dissociation kinetics for fentanyl analogs. The insights inspired us to develop a machine learning approach to analyze the kinetic impact of fentanyl's substituents based on the interactions with mOR residues. This proof-of-concept approach is general; for example, it may be used to tune ligand residence times in computer-aided drug discovery.
2021 年,美国阿片类药物过量死亡人数达到历史最高水平。大多数死亡是由于芬太尼为代表的合成阿片类药物造成的。纳洛酮是一种经过 FDA 批准的逆转剂,通过与 μ 阿片受体 (mOR) 的竞争性结合拮抗阿片类药物。因此,了解阿片类药物的停留时间对于评估纳洛酮的效果很重要。在这里,我们使用元动力学方法估计了 15 种芬太尼和 4 种吗啡类似物的停留时间 (τ),并将其与最近对阿片类药物动力学、解离和纳洛酮抑制常数的测量进行了比较 (Mann 等人,,1020-1232)。重要的是,微观模拟为芬太尼类似物的共同结合机制和解离动力学的分子决定因素提供了一个视角。这一见解启发我们开发了一种基于与 mOR 残基相互作用来分析芬太尼取代基对动力学影响的机器学习方法。这种概念验证方法具有普遍性;例如,它可用于在计算机辅助药物发现中调整配体停留时间。