Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.
J Chem Phys. 2020 Sep 28;153(12):124105. doi: 10.1063/5.0019100.
Determining the drug-target residence time (RT) is of major interest in drug discovery given that this kinetic parameter often represents a better indicator of in vivo drug efficacy than binding affinity. However, obtaining drug-target unbinding rates poses significant challenges, both computationally and experimentally. This is particularly palpable for complex systems like G Protein-Coupled Receptors (GPCRs) whose ligand unbinding typically requires very long timescales oftentimes inaccessible by standard molecular dynamics simulations. Enhanced sampling methods offer a useful alternative, and their efficiency can be further improved by using machine learning tools to identify optimal reaction coordinates. Here, we test the combination of two machine learning techniques, automatic mutual information noise omission and reweighted autoencoded variational Bayes for enhanced sampling, with infrequent metadynamics to efficiently study the unbinding kinetics of two classical drugs with different RTs in a prototypic GPCR, the μ-opioid receptor. Dissociation rates derived from these computations are within one order of magnitude from experimental values. We also use the simulation data to uncover the dissociation mechanisms of these drugs, shedding light on the structures of rate-limiting transition states, which, alongside metastable poses, are difficult to obtain experimentally but important to visualize when designing drugs with a desired kinetic profile.
确定药物-靶标停留时间(RT)在药物发现中具有重要意义,因为这个动力学参数通常比结合亲和力更能代表体内药物疗效。然而,获得药物-靶标解联速率在计算和实验上都存在重大挑战。对于像 G 蛋白偶联受体(GPCR)这样的复杂系统来说,这一点尤为明显,其配体解联通常需要非常长的时间,而标准的分子动力学模拟通常无法达到。增强采样方法提供了一种有用的替代方法,通过使用机器学习工具来识别最佳反应坐标,可以进一步提高它们的效率。在这里,我们测试了两种机器学习技术(自动互信息噪声忽略和重新加权自动编码变分贝叶斯增强采样)与不频繁的元动力学的结合,以有效地研究两种具有不同 RT 的经典药物在原型 GPCR(μ-阿片受体)中的解联动力学。从这些计算中得出的离解速率与实验值相差一个数量级。我们还使用模拟数据来揭示这些药物的离解机制,揭示限速过渡态的结构,这些结构与亚稳构象一样,难以通过实验获得,但在设计具有所需动力学特征的药物时,可视化这些结构非常重要。