Suppr超能文献

基于元动力学和机器学习的阿片类药物结构-动力学关系

Structure-Kinetics Relationships of Opioids from Metadynamics and Machine Learning.

作者信息

Mahinthichaichan Paween, Liu Ruibin, Vo Quynh N, Ellis Christopher R, Stavitskaya Lidiya, Shen Jana

机构信息

Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, United States.

Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States.

出版信息

bioRxiv. 2023 Mar 7:2023.03.06.531338. doi: 10.1101/2023.03.06.531338.

Abstract

The nation's opioid overdose deaths reached an all-time high in 2021. The majority of deaths are due to synthetic opioids represented by fentanyl. Naloxone, which is an FDA-approved reversal agent, antagonizes opioids through competitive binding at the mu-opioid receptor (mOR). Thus, knowledge of opioid's residence time is important for assessing the effectiveness of naloxone. Here we estimated the residence times of 15 fentanyl and 4 morphine analogs using metadynamics, and compared them with the most recent measurement of the opioid kinetic, dissociation, and naloxone inhibitory constants (Mann, Li et al, Clin. Pharmacol. Therapeut. 2022). Importantly, the microscopic simulations offered a glimpse at the common binding mechanism and molecular determinants of dissociation kinetics for fentanyl analogs. The insights inspired us to develop a machine learning (ML) approach to analyze the kinetic impact of fentanyl's substituents based on the interactions with mOR residues. This proof-of-concept approach is general; for example, it may be used to tune ligand residence times in computer-aided drug discovery.

摘要

2021年,该国阿片类药物过量致死人数创历史新高。大多数死亡是由以芬太尼为代表的合成阿片类药物导致的。纳洛酮是一种经美国食品药品监督管理局(FDA)批准的逆转药物,它通过与μ-阿片受体(mOR)竞争性结合来拮抗阿片类药物。因此,了解阿片类药物的驻留时间对于评估纳洛酮的有效性很重要。在此,我们使用元动力学方法估计了15种芬太尼和4种吗啡类似物的驻留时间,并将它们与阿片类药物动力学、解离及纳洛酮抑制常数的最新测量结果进行了比较(曼恩、李等人,《临床药理学与治疗学》,2022年)。重要的是,微观模拟让我们得以一窥芬太尼类似物的常见结合机制及解离动力学的分子决定因素。这些见解启发我们开发一种机器学习(ML)方法,基于与mOR残基的相互作用来分析芬太尼取代基的动力学影响。这种概念验证方法具有通用性;例如,它可用于在计算机辅助药物发现中调整配体的驻留时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c14/10028827/505c543e7226/nihpp-2023.03.06.531338v1-f0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验