Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712, USA.
Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA.
Cereb Cortex. 2023 Jun 8;33(12):7971-7992. doi: 10.1093/cercor/bhad092.
Prominent theories posit that associative memory structures, known as cognitive maps, support flexible generalization of knowledge across cognitive domains. Here, we evince a representational account of cognitive map flexibility by quantifying how spatial knowledge formed one day was used predictively in a temporal sequence task 24 hours later, biasing both behavior and neural response. Participants learned novel object locations in distinct virtual environments. After learning, hippocampus and ventromedial prefrontal cortex (vmPFC) represented a cognitive map, wherein neural patterns became more similar for same-environment objects and more discriminable for different-environment objects. Twenty-four hours later, participants rated their preference for objects from spatial learning; objects were presented in sequential triplets from either the same or different environments. We found that preference response times were slower when participants transitioned between same- and different-environment triplets. Furthermore, hippocampal spatial map coherence tracked behavioral slowing at the implicit sequence transitions. At transitions, predictive reinstatement of virtual environments decreased in anterior parahippocampal cortex. In the absence of such predictive reinstatement after sequence transitions, hippocampus and vmPFC responses increased, accompanied by hippocampal-vmPFC functional decoupling that predicted individuals' behavioral slowing after a transition. Collectively, these findings reveal how expectations derived from spatial experience generalize to support temporal prediction.
有重要理论假定,联想记忆结构,即认知地图,支持认知领域知识的灵活泛化。在这里,我们通过量化参与者在 24 小时后在时间序列任务中使用前一天形成的空间知识进行预测的方式,来证明认知地图灵活性的代表性解释,从而影响行为和神经反应。参与者在不同的虚拟环境中学习新的物体位置。学习后,海马体和腹内侧前额叶皮层(vmPFC)形成了一个认知地图,其中相同环境物体的神经模式变得更加相似,而不同环境物体的神经模式则更加可区分。24 小时后,参与者根据空间学习来评价他们对物体的偏好;物体按照相同或不同环境的顺序呈三对呈现。我们发现,当参与者在相同和不同环境的三对之间转换时,偏好反应时间会变慢。此外,海马体空间图谱的相干性在隐含序列转换时跟踪行为的减缓。在序列转换时,在前海马旁皮质中,对虚拟环境的预测性重新激活减少。在没有这种序列转换后的预测性重新激活的情况下,海马体和 vmPFC 的反应增加,伴随着海马体-vmPFC 的功能解耦,这预测了个体在转换后的行为减缓。总的来说,这些发现揭示了空间经验产生的期望如何泛化以支持时间预测。