Suppr超能文献

跨越时空的认知图式泛化。

Generalization of cognitive maps across space and time.

机构信息

Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712, USA.

Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA.

出版信息

Cereb Cortex. 2023 Jun 8;33(12):7971-7992. doi: 10.1093/cercor/bhad092.

Abstract

Prominent theories posit that associative memory structures, known as cognitive maps, support flexible generalization of knowledge across cognitive domains. Here, we evince a representational account of cognitive map flexibility by quantifying how spatial knowledge formed one day was used predictively in a temporal sequence task 24 hours later, biasing both behavior and neural response. Participants learned novel object locations in distinct virtual environments. After learning, hippocampus and ventromedial prefrontal cortex (vmPFC) represented a cognitive map, wherein neural patterns became more similar for same-environment objects and more discriminable for different-environment objects. Twenty-four hours later, participants rated their preference for objects from spatial learning; objects were presented in sequential triplets from either the same or different environments. We found that preference response times were slower when participants transitioned between same- and different-environment triplets. Furthermore, hippocampal spatial map coherence tracked behavioral slowing at the implicit sequence transitions. At transitions, predictive reinstatement of virtual environments decreased in anterior parahippocampal cortex. In the absence of such predictive reinstatement after sequence transitions, hippocampus and vmPFC responses increased, accompanied by hippocampal-vmPFC functional decoupling that predicted individuals' behavioral slowing after a transition. Collectively, these findings reveal how expectations derived from spatial experience generalize to support temporal prediction.

摘要

有重要理论假定,联想记忆结构,即认知地图,支持认知领域知识的灵活泛化。在这里,我们通过量化参与者在 24 小时后在时间序列任务中使用前一天形成的空间知识进行预测的方式,来证明认知地图灵活性的代表性解释,从而影响行为和神经反应。参与者在不同的虚拟环境中学习新的物体位置。学习后,海马体和腹内侧前额叶皮层(vmPFC)形成了一个认知地图,其中相同环境物体的神经模式变得更加相似,而不同环境物体的神经模式则更加可区分。24 小时后,参与者根据空间学习来评价他们对物体的偏好;物体按照相同或不同环境的顺序呈三对呈现。我们发现,当参与者在相同和不同环境的三对之间转换时,偏好反应时间会变慢。此外,海马体空间图谱的相干性在隐含序列转换时跟踪行为的减缓。在序列转换时,在前海马旁皮质中,对虚拟环境的预测性重新激活减少。在没有这种序列转换后的预测性重新激活的情况下,海马体和 vmPFC 的反应增加,伴随着海马体-vmPFC 的功能解耦,这预测了个体在转换后的行为减缓。总的来说,这些发现揭示了空间经验产生的期望如何泛化以支持时间预测。

相似文献

1
Generalization of cognitive maps across space and time.跨越时空的认知图式泛化。
Cereb Cortex. 2023 Jun 8;33(12):7971-7992. doi: 10.1093/cercor/bhad092.
6
The Neural Dynamics of Novel Scene Imagery.新颖场景意象的神经动力学。
J Neurosci. 2019 May 29;39(22):4375-4386. doi: 10.1523/JNEUROSCI.2497-18.2019. Epub 2019 Mar 22.
7
Linked networks for learning and expressing location-specific threat.用于学习和表达特定位置威胁的关联网络。
Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):E1032-E1040. doi: 10.1073/pnas.1714691115. Epub 2018 Jan 11.
8
Map Making: Constructing, Combining, and Inferring on Abstract Cognitive Maps.制图:抽象认知图的构建、组合和推断。
Neuron. 2020 Sep 23;107(6):1226-1238.e8. doi: 10.1016/j.neuron.2020.06.030. Epub 2020 Jul 22.

本文引用的文献

3
The human brain uses spatial schemas to represent segmented environments.人类大脑利用空间图式来表示分段环境。
Curr Biol. 2021 Nov 8;31(21):4677-4688.e8. doi: 10.1016/j.cub.2021.08.012. Epub 2021 Sep 1.
4
Predictive Uncertainty Underlies Auditory Boundary Perception.预测不确定性是听觉边界感知的基础。
Psychol Sci. 2021 Sep;32(9):1416-1425. doi: 10.1177/0956797621997349. Epub 2021 Aug 19.
5
Hippocampal neurons construct a map of an abstract value space.海马体神经元构建了一个抽象价值空间的图谱。
Cell. 2021 Sep 2;184(18):4640-4650.e10. doi: 10.1016/j.cell.2021.07.010. Epub 2021 Aug 3.
6
Spatial Representations in Rat Orbitofrontal Cortex.大鼠眶额皮质的空间表象。
J Neurosci. 2021 Aug 11;41(32):6933-6945. doi: 10.1523/JNEUROSCI.0830-21.2021. Epub 2021 Jul 1.
7
Reset of hippocampal-prefrontal circuitry facilitates learning.海马-前额叶回路的重置促进了学习。
Nature. 2021 Mar;591(7851):615-619. doi: 10.1038/s41586-021-03272-1. Epub 2021 Feb 24.
9
Structuring Knowledge with Cognitive Maps and Cognitive Graphs.用认知图和认知图构建知识。
Trends Cogn Sci. 2021 Jan;25(1):37-54. doi: 10.1016/j.tics.2020.10.004. Epub 2020 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验