Suppr超能文献

作物类型图用于全球农业监测业务化。

Crop Type Maps for Operational Global Agricultural Monitoring.

机构信息

Department of Geographical Sciences, University of Maryland, College Park, MD, 20742, USA.

GEOGLAM Secretariat, Geneva, Switzerland.

出版信息

Sci Data. 2023 Mar 28;10(1):172. doi: 10.1038/s41597-023-02047-9.

Abstract

Crop type maps identify the spatial distribution of crop types and underpin a large range of agricultural monitoring applications ranging from early warning of crop shortfalls, crop condition assessments, production forecasts, and damage assessment from extreme weather, to agricultural statistics, agricultural insurance, and climate mitigation and adaptation decisions. Despite their importance, harmonized, up-to-date global crop type maps of the main food commodities do not exist to date. To address this critical data gap of global-scale consistent, up-to-date crop type maps, we harmonized 24 national and regional datasets from 21 sources covering 66 countries to develop a set of Best Available Crop Specific masks (BACS) over the major production and export countries for wheat, maize, rice, and soybeans, in the context of the G20 Global Agriculture Monitoring Program, GEOGLAM.

摘要

作物类型图可确定作物类型的空间分布,为从预警作物短缺、作物状况评估、产量预测和极端天气造成的损害评估到农业统计、农业保险以及气候缓解和适应决策等各种农业监测应用提供支持。尽管它们很重要,但目前还没有针对主要粮食作物的协调一致、最新的全球作物类型图。为了解决这一关键的数据差距,即缺乏全球范围内一致、最新的作物类型图,我们协调了 21 个来源的 24 个国家和地区数据集,涵盖了 66 个国家,以便在 G20 全球农业监测计划 GEOGLAM 的框架内,为小麦、玉米、水稻和大豆等主要生产国和出口国开发了一套最佳可用作物特定掩模(BACS)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f736/10050185/9fdfd1f4502e/41597_2023_2047_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验