Suppr超能文献

用于可见光驱动合成气生产的外延生长硅基单原子催化剂。

Epitaxially grown silicon-based single-atom catalyst for visible-light-driven syngas production.

机构信息

MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China.

Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, ON, M5S 1A4, Canada.

出版信息

Nat Commun. 2023 Mar 28;14(1):1719. doi: 10.1038/s41467-023-37401-3.

Abstract

Improving the dispersion of active sites simultaneous with the efficient harvest of photons is a key priority for photocatalysis. Crystalline silicon is abundant on Earth and has a suitable bandgap. However, silicon-based photocatalysts combined with metal elements has proved challenging due to silicon's rigid crystal structure and high formation energy. Here we report a solid-state chemistry that produces crystalline silicon with well-dispersed Co atoms. Isolated Co sites in silicon are obtained through the in-situ formation of CoSi intermediate nanodomains that function as seeds, leading to the production of Co-incorporating silicon nanocrystals at the CoSi/Si epitaxial interface. As a result, cobalt-on-silicon single-atom catalysts achieve an external quantum efficiency of 10% for CO-to-syngas conversion, with CO and H yields of 4.7 mol g and 4.4 mol g, respectively. Moreover, the H/CO ratio is tunable between 0.8 and 2. This photocatalyst also achieves a corresponding turnover number of 2 × 10 for visible-light-driven CO reduction over 6 h, which is over ten times higher than previously reported single-atom photocatalysts.

摘要

提高活性位的分散度同时高效收集光子是光催化的一个关键重点。结晶硅在地球上储量丰富,且带隙合适。然而,由于硅的刚性晶体结构和高形成能,硅基光催化剂与金属元素相结合一直具有挑战性。在这里,我们报告了一种通过固相配位化学产生具有良好分散 Co 原子的结晶硅的方法。通过原位形成 CoSi 中间纳米畴作为晶种,获得了硅中的孤立 Co 位,从而在 CoSi/Si 外延界面上生成了 Co 掺杂硅纳米晶。结果,钴负载在硅上单原子催化剂在 CO 到合成气的转化中实现了 10%的外量子效率,CO 和 H 的产率分别为 4.7 mol g 和 4.4 mol g。此外,H/CO 比可在 0.8 到 2 之间调节。该光催化剂在可见光驱动的 CO 还原反应中,在 6 小时内的相应周转数达到 2×10,比以前报道的单原子光催化剂高 10 倍以上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f786/10050177/de482c78e07a/41467_2023_37401_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验