Suppr超能文献

直接和间接 Z 型异质结构耦合光系统实现 CO 还原和 HO 氧化的协同作用。

Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO reduction and HO oxidation.

机构信息

State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, College of Chemistry, Fuzhou University, 350108, Fuzhou, China.

Key Lab of Inorganic Synthetic and Applied Chemistry, State Key Lab Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 266042, Qingdao, China.

出版信息

Nat Commun. 2020 Jun 16;11(1):3043. doi: 10.1038/s41467-020-16742-3.

Abstract

The stoichiometric photocatalytic reaction of CO with HO is one of the great challenges in photocatalysis. Here, we construct a CuO-Pt/SiC/IrO composite by a controlled photodeposition and then an artificial photosynthetic system with Nafion membrane as diaphragm separating reduction and oxidation half-reactions. The artificial system exhibits excellent photocatalytic performance for CO reduction to HCOOH and HO oxidation to O under visible light irradiation. The yields of HCOOH and O meet almost stoichiometric ratio and are as high as 896.7 and 440.7 μmol g h, respectively. The high efficiencies of CO reduction and HO oxidation in the artificial system are attributed to both the direct Z-scheme electronic structure of CuO-Pt/SiC/IrO and the indirect Z-scheme spatially separated reduction and oxidation units, which greatly prolong lifetime of photogenerated electrons and holes and prevent the backward reaction of products. This work provides an effective and feasible strategy to increase the efficiency of artificial photosynthesis.

摘要

CO 与 HO 的化学计量相光催化反应是光催化领域的重大挑战之一。在这里,我们通过控制光沉积法构建了 CuO-Pt/SiC/IrO 复合材料,然后构建了一个以 Nafion 膜为隔膜的人工光合系统,将还原和氧化半反应分开。该人工系统在可见光照射下表现出优异的 CO 还原为 HCOOH 和 HO 氧化为 O 的光催化性能。HCOOH 和 O 的产率几乎达到化学计量比,分别高达 896.7 和 440.7 μmol g h。人工系统中 CO 还原和 HO 氧化的高效率归因于 CuO-Pt/SiC/IrO 的直接 Z 型电子结构和间接 Z 型空间分离的还原和氧化单元,这极大地延长了光生电子和空穴的寿命,并防止了产物的逆反应。这项工作为提高人工光合作用的效率提供了一种有效可行的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0975/7297725/f74236c2a208/41467_2020_16742_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验