Zou Qing, Priya Sarv, Nagpal Prashant, Jacob Mathews
Division of Pediatric Cardiology, Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Bioengineering (Basel). 2023 Mar 9;10(3):345. doi: 10.3390/bioengineering10030345.
The main focus of this work is to introduce a single free-breathing and ungated imaging protocol to jointly estimate cardiac function and myocardial T1 maps. We reconstruct a time series of images corresponding to k-space data from a free-breathing and ungated inversion recovery gradient echo sequence using a manifold algorithm. We model each image in the time series as a non-linear function of three variables: cardiac and respiratory phases and inversion time. The non-linear function is realized using a convolutional neural networks (CNN) generator, while the CNN parameters, as well as the phase information, are estimated from the measured k-t space data. We use a dense conditional auto-encoder to estimate the cardiac and respiratory phases from the central multi-channel k-space samples acquired at each frame. The latent vectors of the auto-encoder are constrained to be bandlimited functions with appropriate frequency bands, which enables the disentanglement of the latent vectors into cardiac and respiratory phases, even when the data are acquired with intermittent inversion pulses. Once the phases are estimated, we pose the image recovery as the learning of the parameters of the CNN generator from the measured k-t space data. The learned CNN generator is used to generate synthetic data on demand by feeding it with appropriate latent vectors. The proposed approach capitalizes on the synergies between cine MRI and T1 mapping to reduce the scan time and improve patient comfort. The framework also enables the generation of synthetic breath-held cine movies with different inversion contrasts, which improves the visualization of the myocardium. In addition, the approach also enables the estimation of the T1 maps with specific phases, which is challenging with breath-held approaches.
这项工作的主要重点是引入一种单次自由呼吸且无需门控的成像协议,以联合估计心脏功能和心肌T1图谱。我们使用流形算法从自由呼吸且无需门控的反转恢复梯度回波序列重建与k空间数据对应的时间序列图像。我们将时间序列中的每个图像建模为三个变量的非线性函数:心脏相位、呼吸相位和反转时间。该非线性函数通过卷积神经网络(CNN)生成器实现,而CNN参数以及相位信息则从测量的k-t空间数据中估计得出。我们使用密集条件自动编码器从每一帧采集的中央多通道k空间样本中估计心脏和呼吸相位。自动编码器的潜在向量被约束为具有适当频带的带限函数,这使得即使在使用间歇性反转脉冲采集数据时,也能将潜在向量解缠为心脏相位和呼吸相位。一旦估计出相位,我们将图像恢复问题转化为从测量的k-t空间数据中学习CNN生成器的参数。通过向其输入适当的潜在向量,学习到的CNN生成器可按需生成合成数据。所提出的方法利用了电影磁共振成像(cine MRI)和T1图谱之间的协同作用,以减少扫描时间并提高患者舒适度。该框架还能够生成具有不同反转对比度的合成屏气电影,从而改善心肌的可视化效果。此外,该方法还能够估计特定相位的T1图谱,这对于屏气方法来说具有挑战性。