Suppr超能文献

基于深度生成式 SToRM(Gen-SToRM)模型的动态成像。

Dynamic Imaging Using a Deep Generative SToRM (Gen-SToRM) Model.

出版信息

IEEE Trans Med Imaging. 2021 Nov;40(11):3102-3112. doi: 10.1109/TMI.2021.3065948. Epub 2021 Oct 27.

Abstract

We introduce a generative smoothness regularization on manifolds (SToRM) model for the recovery of dynamic image data from highly undersampled measurements. The model assumes that the images in the dataset are non-linear mappings of low-dimensional latent vectors. We use the deep convolutional neural network (CNN) to represent the non-linear transformation. The parameters of the generator as well as the low-dimensional latent vectors are jointly estimated only from the undersampled measurements. This approach is different from traditional CNN approaches that require extensive fully sampled training data. We penalize the norm of the gradients of the non-linear mapping to constrain the manifold to be smooth, while temporal gradients of the latent vectors are penalized to obtain a smoothly varying time-series. The proposed scheme brings in the spatial regularization provided by the convolutional network. The main benefit of the proposed scheme is the improvement in image quality and the orders-of-magnitude reduction in memory demand compared to traditional manifold models. To minimize the computational complexity of the algorithm, we introduce an efficient progressive training-in-time approach and an approximate cost function. These approaches speed up the image reconstructions and offers better reconstruction performance.

摘要

我们提出了一种在流形上的生成平滑正则化(SToRM)模型,用于从高度欠采样的测量中恢复动态图像数据。该模型假设数据集中的图像是非线性低维潜在向量的映射。我们使用深度卷积神经网络(CNN)来表示非线性变换。仅从欠采样测量中联合估计生成器的参数以及低维潜在向量。这种方法与传统的需要大量完全采样训练数据的 CNN 方法不同。我们惩罚非线性映射的梯度范数以约束流形平滑,同时惩罚潜在向量的时间梯度以获得平滑变化的时间序列。所提出的方案带来了卷积网络提供的空间正则化。与传统的流形模型相比,所提出的方案的主要优点是图像质量的提高和内存需求的数量级降低。为了最小化算法的计算复杂度,我们引入了一种有效的随时间渐进训练方法和一种近似代价函数。这些方法加快了图像重建速度,并提供了更好的重建性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5f0/8590205/862888d2674b/nihms-1751930-f0001.jpg

相似文献

1
Dynamic Imaging Using a Deep Generative SToRM (Gen-SToRM) Model.基于深度生成式 SToRM(Gen-SToRM)模型的动态成像。
IEEE Trans Med Imaging. 2021 Nov;40(11):3102-3112. doi: 10.1109/TMI.2021.3065948. Epub 2021 Oct 27.
2
DEEP GENERATIVE STORM MODEL FOR DYNAMIC IMAGING.用于动态成像的深度生成风暴模型
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021. doi: 10.1109/isbi48211.2021.9433839. Epub 2021 Mar 25.
5
Dynamic MRI Using SmooThness Regularization on Manifolds (SToRM).基于流形平滑正则化的动态磁共振成像(SToRM)。
IEEE Trans Med Imaging. 2016 Apr;35(4):1106-15. doi: 10.1109/TMI.2015.2509245. Epub 2015 Dec 17.
6
Free-Breathing & Ungated Cardiac MRI Using Iterative SToRM (i-SToRM).自由呼吸和非门控心脏 MRI 使用迭代 SToRM(i-SToRM)。
IEEE Trans Med Imaging. 2019 Oct;38(10):2303-2313. doi: 10.1109/TMI.2019.2908140. Epub 2019 Mar 28.
7
Deep Generative Adversarial Neural Networks for Compressive Sensing MRI.用于压缩感知 MRI 的深度生成对抗神经网络。
IEEE Trans Med Imaging. 2019 Jan;38(1):167-179. doi: 10.1109/TMI.2018.2858752. Epub 2018 Jul 23.
10
Dynamic Imaging Using Deep Bi-Linear Unsupervised Representation (DEBLUR).基于深度双线性无监督表示的动态成像(DEBLUR)。
IEEE Trans Med Imaging. 2022 Oct;41(10):2693-2703. doi: 10.1109/TMI.2022.3168559. Epub 2022 Sep 30.

引用本文的文献

7
Deep learning for accelerated and robust MRI reconstruction.深度学习在加速和稳健 MRI 重建中的应用。
MAGMA. 2024 Jul;37(3):335-368. doi: 10.1007/s10334-024-01173-8. Epub 2024 Jul 23.
8
DEEP FACTOR MODEL: A NOVEL APPROACH FOR MOTION COMPENSATED MULTI-DIMENSIONAL MRI.深度因子模型:运动补偿多维磁共振成像的一种新方法。
Proc IEEE Int Symp Biomed Imaging. 2023 Apr;2023. doi: 10.1109/isbi53787.2023.10230725. Epub 2023 Sep 1.

本文引用的文献

2
Time-Dependent Deep Image Prior for Dynamic MRI.时变深度图像先验在动态 MRI 中的应用。
IEEE Trans Med Imaging. 2021 Dec;40(12):3337-3348. doi: 10.1109/TMI.2021.3084288. Epub 2021 Nov 30.
6
Deep Generalization of Structured Low-Rank Algorithms (Deep-SLR).深度结构化低秩算法的广泛应用(Deep-SLR)。
IEEE Trans Med Imaging. 2020 Dec;39(12):4186-4197. doi: 10.1109/TMI.2020.3014581. Epub 2020 Nov 30.
7
Free-Breathing and Ungated Dynamic MRI Using Navigator-Less Spiral SToRM.无导航螺旋 SToRM 自由呼吸门控动态 MRI
IEEE Trans Med Imaging. 2020 Dec;39(12):3933-3943. doi: 10.1109/TMI.2020.3008329. Epub 2020 Nov 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验