IEEE Trans Med Imaging. 2021 Nov;40(11):3102-3112. doi: 10.1109/TMI.2021.3065948. Epub 2021 Oct 27.
We introduce a generative smoothness regularization on manifolds (SToRM) model for the recovery of dynamic image data from highly undersampled measurements. The model assumes that the images in the dataset are non-linear mappings of low-dimensional latent vectors. We use the deep convolutional neural network (CNN) to represent the non-linear transformation. The parameters of the generator as well as the low-dimensional latent vectors are jointly estimated only from the undersampled measurements. This approach is different from traditional CNN approaches that require extensive fully sampled training data. We penalize the norm of the gradients of the non-linear mapping to constrain the manifold to be smooth, while temporal gradients of the latent vectors are penalized to obtain a smoothly varying time-series. The proposed scheme brings in the spatial regularization provided by the convolutional network. The main benefit of the proposed scheme is the improvement in image quality and the orders-of-magnitude reduction in memory demand compared to traditional manifold models. To minimize the computational complexity of the algorithm, we introduce an efficient progressive training-in-time approach and an approximate cost function. These approaches speed up the image reconstructions and offers better reconstruction performance.
我们提出了一种在流形上的生成平滑正则化(SToRM)模型,用于从高度欠采样的测量中恢复动态图像数据。该模型假设数据集中的图像是非线性低维潜在向量的映射。我们使用深度卷积神经网络(CNN)来表示非线性变换。仅从欠采样测量中联合估计生成器的参数以及低维潜在向量。这种方法与传统的需要大量完全采样训练数据的 CNN 方法不同。我们惩罚非线性映射的梯度范数以约束流形平滑,同时惩罚潜在向量的时间梯度以获得平滑变化的时间序列。所提出的方案带来了卷积网络提供的空间正则化。与传统的流形模型相比,所提出的方案的主要优点是图像质量的提高和内存需求的数量级降低。为了最小化算法的计算复杂度,我们引入了一种有效的随时间渐进训练方法和一种近似代价函数。这些方法加快了图像重建速度,并提供了更好的重建性能。