Min Yunhui, Suminda Godagama Gamaarachchige Dinesh, Heo Yunji, Kim Mangeun, Ghosh Mrinmoy, Son Young-Ok
Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea.
Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea.
Antioxidants (Basel). 2023 Mar 12;12(3):703. doi: 10.3390/antiox12030703.
Emerging nanoscience allows us to take advantage of the improved evolutionary components and apply today's advanced characterization and fabrication techniques to solve environmental and biological problems. Despite the promise that nanotechnology will improve our lives, the potential risks of technology remain largely uncertain. The lack of information on bio-impacts and the absence of consistent standards are the limitations of using metal-based nanoparticles (mNPs) for existing applications. To analyze the role played by the mNPs physicochemical characteristics and tactics to protect live beings, the field of nanotoxicology nowadays is focused on collecting and analyzing data from in vitro and in vivo investigations. The degree of reactive oxygen species (ROS) and oxidative stress caused by material nanoparticles (NPs) depends on many factors, such as size, shape, chemical composition, etc. These characteristics enable NPs to enter cells and interact with biological macromolecules and cell organelles, resulting in oxidative damage, an inflammatory response, the development of mitochondrial dysfunction, damage to genetic material, or cytotoxic effects. This report explored the mechanisms and cellular signaling cascades of mNPs-induced oxidative stress and the relevant health consequences.
新兴的纳米科学使我们能够利用改进的进化组件,并应用当今先进的表征和制造技术来解决环境和生物问题。尽管纳米技术有望改善我们的生活,但该技术的潜在风险在很大程度上仍不确定。缺乏生物影响信息以及缺乏统一标准是在现有应用中使用金属基纳米颗粒(mNP)的局限性。为了分析mNP的物理化学特性所起的作用以及保护生物的策略,如今纳米毒理学领域专注于收集和分析来自体外和体内研究的数据。物质纳米颗粒(NP)引起的活性氧(ROS)程度和氧化应激取决于许多因素,例如尺寸、形状、化学成分等。这些特性使NP能够进入细胞并与生物大分子和细胞器相互作用,从而导致氧化损伤、炎症反应、线粒体功能障碍的发展、遗传物质损伤或细胞毒性作用。本报告探讨了mNP诱导氧化应激的机制和细胞信号级联反应以及相关的健康后果。