Muhaimin Muhaimin, Chaerunisaa Anis Yohana, Dewi Mayang Kusuma, Khatib Alfi, Hazrina Aghnia
Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jl, Raya Jatinangor Km 21.5, Sumedang 45363, West Java, Indonesia.
Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl, Raya Jatinangor Km 21.5, Sumedang 45363, West Java, Indonesia.
Pharmaceuticals (Basel). 2025 May 9;18(5):703. doi: 10.3390/ph18050703.
Nanotechnology is the manipulation of matter on an atomic and molecular scale, producing a lot of new substances with properties that are not necessarily easily expected based on present knowledge. Nanotechnology produces substances with unique properties that can be beneficial or harmful depending on their biocompatibility and distribution. Understanding nanomaterial toxicity is essential to ensure their safe application in biological and environmental applications. This review aims to provide a comprehensive overview of nanoparticle toxicity, focusing on their physicochemical properties, mechanisms of cellular uptake, and potential health risks. Key factors influencing toxicity include particle size, shape, concentration, aspect ratio, crystallinity, surface charge, dissolution, and agglomeration. Nanoparticles can induce oxidative stress and inflammation, contributing to adverse effects when inhaled, ingested, or applied to the skin. However, their toxicity may not be limited to just these pathways, as they can also exhibit other toxic properties, such as activation of the apoptotic pathway and mitochondrial damage. By summarizing the current knowledge on these aspects, this article intends to support the development of nanoparticles in a safer way for future applications.
纳米技术是在原子和分子尺度上对物质进行操控,从而产生许多具有基于现有知识未必容易预期的特性的新物质。纳米技术所产生的物质具有独特的特性,根据其生物相容性和分布情况,这些特性可能有益也可能有害。了解纳米材料的毒性对于确保其在生物和环境应用中的安全使用至关重要。本综述旨在全面概述纳米颗粒的毒性,重点关注其物理化学性质、细胞摄取机制以及潜在的健康风险。影响毒性的关键因素包括颗粒大小、形状、浓度、纵横比、结晶度、表面电荷、溶解性和团聚情况。纳米颗粒可引发氧化应激和炎症,在吸入、摄入或应用于皮肤时会导致不良影响。然而,它们的毒性可能不仅限于这些途径,因为它们还可能表现出其他毒性特性,如激活凋亡途径和线粒体损伤。通过总结目前在这些方面的知识,本文旨在为未来更安全地开发纳米颗粒以供应用提供支持。
Biointerphases. 2007-12
Int J Nanomedicine. 2008
Antioxidants (Basel). 2025-4-18
J Occup Environ Med. 2011-6
Res Rep Health Eff Inst. 2019-3
J Appl Toxicol. 2017-8-11
Pharmaceuticals (Basel). 2025-7-3
Pharmaceuticals (Basel). 2025-2-20
Int J Nanomedicine. 2024-9-11
Pharmaceuticals (Basel). 2024-8-12
Front Pharmacol. 2024-7-12
Environ Int. 2024-8
Int J Nanomedicine. 2024