Suppr超能文献

全集成电光硅电路的生物素传感功能化。

Functionalization of a Fully Integrated Electrophotonic Silicon Circuit for Biotin Sensing.

机构信息

National Institute for Astrophysics, Optics and Electronics (INAOE), Department of Electronics, Puebla 72000, Mexico.

出版信息

Biosensors (Basel). 2023 Mar 18;13(3):399. doi: 10.3390/bios13030399.

Abstract

Electrophotonic (EPh) circuits are novel systems where photons and electrons can be controlled simultaneously in the same integrated circuit, attaining the development of innovative sensors for different applications. In this work, we present a complementary metal-oxide-semiconductor (CMOS)-compatible EPh circuit for biotin sensing, in which a silicon-based light source is monolithically integrated. The device is composed of an integrated light source, a waveguide, and a p-n photodiode, which are all fabricated in the same chip. The functionalization of the waveguide's surface was investigated to biotinylate the EPh system for potential biosensing applications. The modified surfaces were characterized by AFM, optical microscopy, and Raman spectroscopy, as well as by photoluminescence measurements. The changes on the waveguide's surface due to functionalization and biotinylation translated into different photocurrent intensities detected in the photodiode, demonstrating the potential uses of the EPh circuit as a biosensor.

摘要

光电(EPh)电路是一种新颖的系统,其中光子和电子可以在同一集成电路中同时控制,从而实现用于不同应用的创新传感器的开发。在这项工作中,我们提出了一种用于生物素感测的互补金属氧化物半导体(CMOS)兼容的 EPh 电路,其中硅基光源被单片集成。该器件由集成光源、波导和 p-n 光电二极管组成,它们均在同一芯片上制造。研究了波导表面的功能化,以使 EPh 系统进行生物素化,以用于潜在的生物传感应用。通过原子力显微镜(AFM)、光学显微镜和拉曼光谱以及光致发光测量对修饰表面进行了表征。由于功能化和生物素化导致波导表面发生的变化转化为光电二极管中检测到的不同光电流强度,这证明了 EPh 电路作为生物传感器的潜在用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0c2/10046063/7ada9a30f47b/biosensors-13-00399-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验