Alphonse A Sherly, Benifa J V Bibal, Muaad Abdullah Y, Chola Channabasava, Heyat Md Belal Bin, Murshed Belal Abdullah Hezam, Abdel Samee Nagwan, Alabdulhafith Maali, Al-Antari Mugahed A
School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India.
Department of Studies in Computer Science and Engineering, Indian Institute of Information Technology, Kottayam 686635, India.
Diagnostics (Basel). 2023 Mar 14;13(6):1104. doi: 10.3390/diagnostics13061104.
Melanoma, a kind of skin cancer that is very risky, is distinguished by uncontrolled cell multiplication. Melanoma detection is of the utmost significance in clinical practice because of the atypical border structure and the numerous types of tissue it can involve. The identification of melanoma is still a challenging process for color images, despite the fact that numerous approaches have been proposed in the research that has been done. In this research, we present a comprehensive system for the efficient and precise classification of skin lesions. The framework includes preprocessing, segmentation, feature extraction, and classification modules. Preprocessing with DullRazor eliminates skin-imaging hair artifacts. Next, Fully Connected Neural Network (FCNN) semantic segmentation extracts precise and obvious Regions of Interest (ROIs). We then extract relevant skin image features from ROIs using an enhanced Sobel Directional Pattern (SDP). For skin image analysis, Sobel Directional Pattern outperforms ABCD. Finally, a stacked Restricted Boltzmann Machine (RBM) classifies skin ROIs. Stacked RBMs accurately classify skin melanoma. The experiments have been conducted on five datasets: Pedro Hispano Hospital (PH2), International Skin Imaging Collaboration (ISIC 2016), ISIC 2017, Dermnet, and DermIS, and achieved an accuracy of 99.8%, 96.5%, 95.5%, 87.9%, and 97.6%, respectively. The results show that a stack of Restricted Boltzmann Machines is superior for categorizing skin cancer types using the proposed innovative SDP.
黑色素瘤是一种风险极高的皮肤癌,其特征是细胞不受控制地增殖。由于其边界结构不典型且可能涉及多种组织类型,黑色素瘤的检测在临床实践中具有至关重要的意义。尽管在已开展的研究中提出了许多方法,但对于彩色图像而言识别黑色素瘤仍然是一个具有挑战性的过程。在本研究中,我们提出了一个用于皮肤病变高效精确分类的综合系统。该框架包括预处理、分割、特征提取和分类模块。使用DullRazor进行预处理可消除皮肤成像中的毛发伪影。接下来,全连接神经网络(FCNN)语义分割提取精确且明显的感兴趣区域(ROI)。然后,我们使用增强型索贝尔方向模式(SDP)从ROI中提取相关的皮肤图像特征。对于皮肤图像分析,索贝尔方向模式优于ABCD。最后,使用堆叠受限玻尔兹曼机(RBM)对皮肤ROI进行分类。堆叠RBM能够准确地对皮肤黑色素瘤进行分类。我们在五个数据集上进行了实验:佩德罗·伊斯帕诺医院(PH2)、国际皮肤成像协作组织(ISIC 2016)、ISIC 2017、皮肤病网(Dermnet)和皮肤病图像数据库(DermIS),准确率分别达到了99.8%、96.5%、95.5%、87.9%和97.6%。结果表明,使用所提出的创新型SDP,堆叠受限玻尔兹曼机在对皮肤癌类型进行分类方面表现更优。