Suppr超能文献

基于自适应主曲率、颜色归一化和特征提取与 ABCD 规则的黑色素瘤皮肤癌检测方法。

Melanoma Skin Cancer Detection Method Based on Adaptive Principal Curvature, Colour Normalisation and Feature Extraction with the ABCD Rule.

机构信息

Department of Information Technology, Hue College of Industry, Hue, Vietnam.

Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

出版信息

J Digit Imaging. 2020 Jun;33(3):574-585. doi: 10.1007/s10278-019-00316-x.

Abstract

According to statistics of the American Cancer Society, in 2015, there are about 91,270 American adults diagnosed with melanoma of the skin. For the European Union, there are over 90,000 new cases of melanoma annually. Although melanoma only accounts for about 1% of all skin cancers, it causes most of the skin cancer deaths. Melanoma is considered one of the fastest-growing forms of skin cancer, and hence the early detection is crucial, as early detection is helpful and can provide strong recommendations for specific and suitable treatment regimens. In this work, we propose a method to detect melanoma skin cancer with automatic image processing techniques. Our method includes three stages: pre-process images of skin lesions by adaptive principal curvature, segment skin lesions by the colour normalisation and extract features by the ABCD rule. We provide experimental results of the proposed method on the publicly available International Skin Imaging Collaboration (ISIC) skin lesions dataset. The acquired results on melanoma skin cancer detection indicates that the proposed method has high accuracy, and overall, a good performance: for the segmentation stage, the accuracy, Dice, Jaccard scores are 96.6%, 93.9% and 88.7%, respectively; and for the melanoma detection stage, the accuracy is up to 100% for a selected subset of the ISIC dataset.

摘要

根据美国癌症协会的统计,2015 年有大约 91270 名美国成年人被诊断患有皮肤黑色素瘤。在欧盟,每年有超过 90000 例新的黑色素瘤病例。尽管黑色素瘤仅占所有皮肤癌的 1%左右,但它导致了大多数皮肤癌死亡。黑色素瘤被认为是皮肤癌中增长最快的形式之一,因此早期检测至关重要,因为早期检测有助于为特定和合适的治疗方案提供有力建议。在这项工作中,我们提出了一种利用自动图像处理技术检测黑色素瘤皮肤癌的方法。我们的方法包括三个阶段:通过自适应主曲率预处理皮肤病变图像,通过颜色归一化分割皮肤病变,并通过 ABCD 规则提取特征。我们在公开的国际皮肤成像合作(ISIC)皮肤病变数据集上提供了所提出方法的实验结果。在黑色素瘤皮肤癌检测方面获得的结果表明,该方法具有很高的准确性和良好的整体性能:对于分割阶段,准确性、骰子系数和 Jaccard 分数分别为 96.6%、93.9%和 88.7%;对于黑色素瘤检测阶段,在 ISIC 数据集的一个选定子集上,准确性高达 100%。

相似文献

2
Melanoma Skin Cancer Detection based on Image Processing.基于图像处理的黑色素瘤皮肤癌检测
Curr Med Imaging Rev. 2020;16(1):50-58. doi: 10.2174/1573405614666180911120546.
6
Fast fully automatic skin lesions segmentation probabilistic with Parzen window.基于 Parzen 窗的快速全自动皮肤病变分割概率法。
Comput Med Imaging Graph. 2020 Oct;85:101774. doi: 10.1016/j.compmedimag.2020.101774. Epub 2020 Aug 14.

引用本文的文献

本文引用的文献

8
Automatic skin lesion segmentation via iterative stochastic region merging.通过迭代随机区域合并实现皮肤病变自动分割
IEEE Trans Inf Technol Biomed. 2011 Nov;15(6):929-36. doi: 10.1109/TITB.2011.2157829. Epub 2011 May 27.
9
Automated color calibration method for dermoscopy images.自动皮肤镜图像颜色校准方法。
Comput Med Imaging Graph. 2011 Mar;35(2):89-98. doi: 10.1016/j.compmedimag.2010.08.003. Epub 2010 Oct 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验