Suppr超能文献

基于术前磁共振成像的成釉细胞瘤型颅咽管瘤的不确定性感知深度学习分类

Uncertainty-Aware Deep Learning Classification of Adamantinomatous Craniopharyngioma from Preoperative MRI.

作者信息

Prince Eric W, Ghosh Debashis, Görg Carsten, Hankinson Todd C

机构信息

Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA.

Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO 80045, USA.

出版信息

Diagnostics (Basel). 2023 Mar 16;13(6):1132. doi: 10.3390/diagnostics13061132.

Abstract

Diagnosis of adamantinomatous craniopharyngioma (ACP) is predominantly determined through invasive pathological examination of a neurosurgical biopsy specimen. Clinical experts can distinguish ACP from Magnetic Resonance Imaging (MRI) with an accuracy of 86%, and 9% of ACP cases are diagnosed this way. Classification using deep learning (DL) provides a solution to support a non-invasive diagnosis of ACP through neuroimaging, but it is still limited in implementation, a major reason being the lack of predictive uncertainty representation. We trained and tested a DL classifier on preoperative MRI from 86 suprasellar tumor patients across multiple institutions. We then applied a Bayesian DL approach to calibrate our previously published ACP classifier, extending beyond point-estimate predictions to predictive distributions. Our original classifier outperforms random forest and XGBoost models in classifying ACP. The calibrated classifier underperformed our previously published results, indicating that the original model was overfit. Mean values of the predictive distributions were not informative regarding model uncertainty. However, the variance of predictive distributions was indicative of predictive uncertainty. We developed an algorithm to incorporate predicted values and the associated uncertainty to create a classification abstention mechanism. Our model accuracy improved from 80.8% to 95.5%, with a 34.2% abstention rate. We demonstrated that calibration of DL models can be used to estimate predictive uncertainty, which may enable clinical translation of artificial intelligence to support non-invasive diagnosis of brain tumors in the future.

摘要

成釉细胞瘤型颅咽管瘤(ACP)的诊断主要通过神经外科活检标本的侵入性病理检查来确定。临床专家通过磁共振成像(MRI)区分ACP的准确率为86%,且9%的ACP病例是通过这种方式诊断出来的。使用深度学习(DL)进行分类提供了一种解决方案,以支持通过神经影像学对ACP进行非侵入性诊断,但在实际应用中仍存在局限性,一个主要原因是缺乏预测不确定性表示。我们在来自多个机构的86例鞍上肿瘤患者的术前MRI上训练并测试了一个DL分类器。然后,我们应用贝叶斯深度学习方法来校准我们之前发表的ACP分类器,将预测范围从点估计扩展到预测分布。我们最初的分类器在ACP分类方面优于随机森林和XGBoost模型。校准后的分类器表现不如我们之前发表的结果,这表明原始模型存在过拟合问题。预测分布的平均值对于模型不确定性并无参考价值。然而,预测分布的方差表明了预测不确定性。我们开发了一种算法,将预测值和相关不确定性纳入其中,以创建一种分类弃权机制。我们的模型准确率从80.8%提高到了95.5%,弃权率为34.2%。我们证明了深度学习模型的校准可用于估计预测不确定性,这可能会使人工智能在未来支持脑肿瘤的非侵入性诊断方面实现临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a2c/10047069/c7dec97235d9/diagnostics-13-01132-g001.jpg

相似文献

本文引用的文献

2
MR Imaging of Pediatric Brain Tumors.小儿脑肿瘤的磁共振成像
Diagnostics (Basel). 2022 Apr 12;12(4):961. doi: 10.3390/diagnostics12040961.
6
An Uncertainty-Aware Transfer Learning-Based Framework for COVID-19 Diagnosis.基于不确定性感知的迁移学习框架用于 COVID-19 诊断。
IEEE Trans Neural Netw Learn Syst. 2021 Apr;32(4):1408-1417. doi: 10.1109/TNNLS.2021.3054306. Epub 2021 Apr 2.
7
Descriptive epidemiology of craniopharyngiomas in the United States.美国颅咽管瘤的描述性流行病学。
Pituitary. 2021 Aug;24(4):517-522. doi: 10.1007/s11102-021-01127-6. Epub 2021 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验