Phetrittikun Ratchakit, Suvirat Kerdkiat, Horsiritham Kanakorn, Ingviya Thammasin, Chaichulee Sitthichok
Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand.
College of Digital Science, Prince of Songkla University, Songkhla 90110, Thailand.
Diagnostics (Basel). 2023 Mar 18;13(6):1171. doi: 10.3390/diagnostics13061171.
Acid-base disorders occur when the body's normal pH is out of balance. They can be caused by problems with kidney or respiratory function or by an excess of acids or bases that the body cannot properly eliminate. Acid-base and potassium imbalances are mechanistically linked because acid-base imbalances can alter the transport of potassium. Both acid-base and potassium imbalances are common in critically ill patients. This study investigated machine learning models for predicting the occurrence of acid-base and potassium imbalances in intensive care patients. We used an institutional dataset of 1089 patients with 87 variables, including vital signs, general appearance, and laboratory results. Gradient boosting (GB) was able to predict nine clinical conditions related to acid-base and potassium imbalances: mortality (AUROC = 0.9822), hypocapnia (AUROC = 0.7524), hypercapnia (AUROC = 0.8228), hypokalemia (AUROC = 0.9191), hyperkalemia (AUROC = 0.9565), respiratory acidosis (AUROC = 0.8125), respiratory alkalosis (AUROC = 0.7685), metabolic acidosis (AUROC = 0.8682), and metabolic alkalosis (AUROC = 0.8284). Some predictions remained relatively robust even when the prediction window was increased. Additionally, the decision-making process was made more interpretable and transparent through the use of SHAP analysis. Overall, the results suggest that machine learning could be a useful tool to gain insight into the condition of intensive care patients and assist in the management of acid-base and potassium imbalances.
当身体的正常pH值失衡时,就会发生酸碱紊乱。它们可能由肾脏或呼吸功能问题引起,也可能由身体无法正常排出的酸或碱过多引起。酸碱失衡与钾失衡在机制上相互关联,因为酸碱失衡会改变钾的转运。酸碱失衡和钾失衡在重症患者中都很常见。本研究调查了用于预测重症监护患者酸碱失衡和钾失衡发生情况的机器学习模型。我们使用了一个包含1089名患者的机构数据集,其中有87个变量,包括生命体征、一般外观和实验室检查结果。梯度提升(GB)能够预测与酸碱失衡和钾失衡相关的九种临床情况:死亡率(曲线下面积 = 0.9822)、低碳酸血症(曲线下面积 = 0.7524)、高碳酸血症(曲线下面积 = 0.8228)、低钾血症(曲线下面积 = 0.9191)、高钾血症(曲线下面积 = 0.9565)、呼吸性酸中毒(曲线下面积 = 0.8125)、呼吸性碱中毒(曲线下面积 = 0.7685)、代谢性酸中毒(曲线下面积 = 0.8682)和代谢性碱中毒(曲线下面积 = 0.8284)。即使预测窗口增加,一些预测仍然相对稳健。此外,通过使用SHAP分析,决策过程变得更具可解释性和透明度。总体而言,结果表明机器学习可能是一种有用的工具,有助于深入了解重症监护患者的病情,并协助管理酸碱失衡和钾失衡。