Suppr超能文献

基于机器学习的模块化重症监护数据中的压疮预测

Machine Learning-Based Pressure Ulcer Prediction in Modular Critical Care Data.

作者信息

Šín Petr, Hokynková Alica, Marie Nováková, Andrea Pokorná, Krč Rostislav, Podroužek Jan

机构信息

Department of Burns and Plastic Surgery, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, Jihlavská 20, 625 00 Brno, Czech Republic.

Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.

出版信息

Diagnostics (Basel). 2022 Mar 30;12(4):850. doi: 10.3390/diagnostics12040850.

Abstract

Increasingly available open medical and health datasets encourage data-driven research with a promise of improving patient care through knowledge discovery and algorithm development. Among efficient approaches to such high-dimensional problems are a number of machine learning methods, which are applied in this paper to pressure ulcer prediction in modular critical care data. An inherent property of many health-related datasets is a high number of irregularly sampled time-variant and scarcely populated features, often exceeding the number of observations. Although machine learning methods are known to work well under such circumstances, many choices regarding model and data processing exist. In particular, this paper address both theoretical and practical aspects related to the application of six classification models to pressure ulcers, while utilizing one of the largest available Medical Information Mart for Intensive Care (MIMIC-IV) databases. Random forest, with an accuracy of 96%, is the best-performing approach among the considered machine learning algorithms.

摘要

越来越多可获取的开放医学和健康数据集推动了数据驱动的研究,有望通过知识发现和算法开发改善患者护理。针对此类高维问题的有效方法包括多种机器学习方法,本文将这些方法应用于模块化重症监护数据中的压疮预测。许多与健康相关的数据集的一个固有特性是存在大量不规则采样的时变且稀疏的特征,其数量常常超过观测值的数量。尽管已知机器学习方法在这种情况下能很好地发挥作用,但在模型和数据处理方面仍有许多选择。特别是,本文探讨了将六种分类模型应用于压疮的理论和实践方面,同时利用了最大的可用重症监护医学信息集市(MIMIC-IV)数据库之一。随机森林在考虑的机器学习算法中表现最佳,准确率达96%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de11/9030498/f9d67d44da20/diagnostics-12-00850-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验