Suppr超能文献

不同表面活性剂作用下氨基酸与硒协同对西兰花进行小花生物强化:功能性食品培育的案例研究

Floret Biofortification of Broccoli Using Amino Acids Coupled with Selenium under Different Surfactants: A Case Study of Cultivating Functional Foods.

作者信息

Bouranis Dimitris L, Stylianidis Georgios P, Manta Vassiliki, Karousis Evangelos N, Tzanaki Andriani, Dimitriadi Despina, Bouzas Emmanuel A, Siyiannis Vassilis F, Constantinou-Kokotou Violetta, Chorianopoulou Styliani N, Bloem Elke

机构信息

Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.

PlanTerra Institute for Plant Nutrition & Soil Quality, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.

出版信息

Plants (Basel). 2023 Mar 10;12(6):1272. doi: 10.3390/plants12061272.

Abstract

Broccoli serves as a functional food because it can accumulate selenium (Se), well-known bioactive amino-acid-derived secondary metabolites, and polyphenols. The chemical and physical properties of Se are very similar to those of sulfur (S), and competition between sulfate and selenate for uptake and assimilation has been demonstrated. Towards an efficient agronomic fortification of broccoli florets, the working questions were whether we could overcome this competition by exogenously applying the S-containing amino acids cysteine (Cys) or/and methionine (Met), or/and the precursors of Glucosinolate (GSL) types along with Se application. Broccoli plants were cultivated in a greenhouse and at the beginning of floret growth, we exogenously applied sodium selenate in the concentration gradient of 0, 0.2, 1.5, and 3.0 mM to study the impact of increased Se concentration on the organic S (S) content of the floret. The Se concentration of 0.2 mM (Se0.2) was coupled with the application of Cys, Met, their combination, or a mixture of phenylalanine, tryptophane, and Met. The application took place through fertigation or foliar application (FA) by adding isodecyl alcohol ethoxylate (IAE) or a silicon ethoxylate (SiE) surfactant. Fresh biomass, dry mass, and Se accumulation in florets were evaluated, along with their contents of S, chlorophylls (Chl), carotenoids (Car), glucoraphanin (GlRa), glucobrassicin (GlBra), glucoiberin (GlIb), and polyphenols (PPs), for the biofortification efficiency of the three application modes. From the studied selenium concentration gradient, the foliar application of 0.2 mM Se using silicon ethoxylate (SiE) as a surfactant provided the lowest commercially acceptable Se content in florets (239 μg or 0.3 μmol g DM); it reduced S (-45%), GlIb (-31%), and GlBr (-27%); and it increased Car (21%) and GlRa (27%). Coupled with amino acids, 0.2 mM Se provided commercially acceptable Se contents per floret only via foliar application. From the studied combinations, that of Met,Se0.2/FA,IAE provided the lowest Se content per floret (183 μg or 0.2 μmol g DM) and increased S (35%), Car (45%), and total Chl (27%), with no effect on PPs or GSLs. Cys,Met,Se0.2/FA,IAE and amino acid mix,Se0.2/FA,IAE increased S content, too, by 36% and 16%, respectively. Thus, the foliar application with the IAE surfactant was able to increase S, and methionine was the amino acid in common in these treatments, with varying positive effects on carotenoids and chlorophylls. Only the Cys,Met,Se0.2 combination presented positive effects on GSLs, especially GlRa, but it reduced the fresh mass of the floret. The foliar application with SiE as a surfactant failed to positively affect the organic S content. However, in all studied combinations of Se 0.2 mM with amino acids, the Se content per floret was commercially acceptable, the yield was not affected, the content of GSLs was increased (especially that of GlRa and GlIb), and PPs were not affected. The content of GlBr decreased except for the treatment with methionine (Met,Se0.2/FA,SiE) where GlBr remained unaffected. Hence, the combination of Se with the used amino acids and surfactants can provide enhanced biofortification efficiency in broccoli by providing florets as functional foods with enhanced functional properties.

摘要

西兰花是一种功能性食品,因为它能够积累硒(Se)、著名的生物活性氨基酸衍生次生代谢产物以及多酚。硒的化学和物理性质与硫(S)非常相似,并且已经证明了硫酸盐和硒酸盐在吸收和同化过程中的竞争。为了实现西兰花小花的高效农艺强化,我们面临的问题是,能否通过外源施用含硫氨基酸半胱氨酸(Cys)或/和蛋氨酸(Met),或/和硫代葡萄糖苷(GSL)类型的前体物质并同时施用硒来克服这种竞争。西兰花植株在温室中种植,在小花生长初期,我们以0、0.2、1.5和3.0 mM的浓度梯度外源施用硒酸钠,以研究硒浓度增加对小花有机硫(S)含量的影响。0.2 mM(Se0.2)的硒浓度与Cys、Met、它们的组合,或苯丙氨酸、色氨酸和Met的混合物一起施用。通过施肥或叶面喷施(FA),添加异癸醇乙氧基化物(IAE)或硅乙氧基化物(SiE)表面活性剂来进行施用。评估了小花中的新鲜生物量、干质量和硒积累,以及它们的硫、叶绿素(Chl)、类胡萝卜素(Car)、萝卜硫苷(GlRa)、芸苔葡糖硫苷(GlBra)、葡萄糖异硫氰酸酯(GlIb)和多酚(PPs)含量,以研究三种施用模式的生物强化效率。在所研究的硒浓度梯度中,以硅乙氧基化物(SiE)作为表面活性剂叶面喷施0.2 mM硒,在小花中提供了最低的商业可接受硒含量(239 μg或0.3 μmol g DM);它降低了硫(-45%)、GlIb(-31%)和GlBr(-27%);并增加了类胡萝卜素(21%)和萝卜硫苷(27%)。与氨基酸结合,0.2 mM硒仅通过叶面喷施提供了每朵小花商业可接受的硒含量。在所研究的组合中,Met,Se0.2/FA,IAE组合提供了每朵小花最低的硒含量(183 μg或0.2 μmol g DM),并增加了硫(35%)、类胡萝卜素(45%)和总叶绿素(27%),对多酚或硫代葡萄糖苷没有影响。Cys,Met,Se0.2/FA,IAE和氨基酸混合物,Se0.2/FA,IAE也分别使硫含量增加了36%和16%。因此,使用IAE表面活性剂进行叶面喷施能够增加硫,蛋氨酸是这些处理中共同的氨基酸,对类胡萝卜素和叶绿素具有不同程度的积极影响。只有Cys,Met,Se0.2组合对硫代葡萄糖苷有积极影响,尤其是萝卜硫苷,但它降低了小花的新鲜质量。以SiE作为表面活性剂的叶面喷施未能对有机硫含量产生积极影响。然而,在所有研究的0.2 mM硒与氨基酸的组合中,每朵小花的硒含量是商业可接受的,产量不受影响,硫代葡萄糖苷含量增加(尤其是萝卜硫苷和葡萄糖异硫氰酸酯),多酚不受影响。除了蛋氨酸处理(Met,Se0.2/FA,SiE)中芸苔葡糖硫苷含量保持不变外,芸苔葡糖硫苷含量均下降。因此,硒与所用氨基酸和表面活性剂的组合可以通过提供具有增强功能特性的小花作为功能性食品,提高西兰花的生物强化效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9796/10055910/53f8c4dfc350/plants-12-01272-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验