Department of Obstetrics and Gynecology, University of Illinois College of Medicine-Chicago, IL (W.E.A., C.S.B., G.Z., I.A.B.).
Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine, Dayton, OH (T.L.B.).
Hypertension. 2023 Jun;80(6):1363-1374. doi: 10.1161/HYPERTENSIONAHA.122.20807. Epub 2023 Mar 29.
Placental disorders contribute to pregnancy complications, including preeclampsia and fetal growth restriction (FGR), but debate regarding their specific pathobiology persists. Our objective was to apply transcriptomics with weighted gene correlation network analysis to further clarify the placental dysfunction in these conditions.
We performed RNA sequencing with weighted gene correlation network analysis using human placental samples (n=30), separated into villous tissue and decidua basalis, and clinically grouped as follows: (1) early-onset preeclampsia (EOPE)+FGR (n=7); (2) normotensive, nonanomalous preterm FGR (n=5); (2) EOPE without FGR (n=8); (4) spontaneous idiopathic preterm birth (n=5) matched for gestational age; and (5) uncomplicated term births (n=5). Our data was compared with RNA sequencing data sets from public databases (GSE114691, GSE148241, and PRJEB30656; n=130 samples).
We identified 14 correlated gene modules in our specimens, of which most were significantly correlated with birthweight and maternal blood pressure. Of the 3 network modules consistently predictive of EOPE±FGR across data sets, we prioritized a coexpression gene group enriched for hypoxia-response and metabolic pathways for further investigation. Cluster analysis based on transcripts from this module and the glycolysis/gluconeogenesis metabolic pathway consistently distinguished a subset of EOPE±FGR samples with an expression signature suggesting modified tissue bioenergetics. We demonstrated that the expression ratios of / and / could be used as surrogate indices for the larger panels of genes in identifying this subgroup.
We provide novel evidence for a molecular subphenotype consistent with a glycolytic metabolic shift that occurs more frequently but not universally in placental specimens of EOPE±FGR.
胎盘疾病是导致妊娠并发症的原因之一,包括子痫前期和胎儿生长受限(FGR),但其具体的病理生物学机制仍存在争议。我们的目的是应用转录组学和加权基因相关网络分析进一步阐明这些情况下的胎盘功能障碍。
我们对 30 个人类胎盘样本进行了 RNA 测序和加权基因相关网络分析,样本分为绒毛组织和蜕膜基底,并根据临床分组如下:(1)早发型子痫前期(EOPE)+FGR(n=7);(2)血压正常、非畸形早产 FGR(n=5);(2)EOPE 无 FGR(n=8);(4)自发性特发性早产(n=5),与胎龄匹配;(5)无并发症的足月分娩(n=5)。我们的数据与公共数据库的 RNA 测序数据集(GSE114691、GSE148241 和 PRJEB30656;n=130 个样本)进行了比较。
我们在标本中发现了 14 个相关的基因模块,其中大多数与出生体重和母亲血压显著相关。在跨数据集一致预测 EOPE±FGR 的 3 个网络模块中,我们优先选择了一个富含缺氧反应和代谢途径的共表达基因组进行进一步研究。基于该模块和糖酵解/糖异生代谢途径的转录本进行的聚类分析一致地区分了 EOPE±FGR 样本的一个亚组,其表达特征表明组织生物能量学发生了改变。我们证明,/和/的表达比值可以作为识别该亚组的更大基因面板的替代指标。
我们提供了新的证据,证明存在一个与糖酵解代谢转变一致的分子亚表型,这种转变在 EOPE±FGR 的胎盘标本中更频繁但并非普遍发生。