Suppr超能文献

蛋白质组学和脂质组学在动脉粥样硬化性心血管疾病风险预测中的应用。

Proteomics and lipidomics in atherosclerotic cardiovascular disease risk prediction.

机构信息

Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.

Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.

出版信息

Eur Heart J. 2023 May 7;44(18):1594-1607. doi: 10.1093/eurheartj/ehad161.

Abstract

Given the limited accuracy of clinically used risk scores such as the Systematic COronary Risk Evaluation 2 system and the Second Manifestations of ARTerial disease 2 risk scores, novel risk algorithms determining an individual's susceptibility of future incident or recurrent atherosclerotic cardiovascular disease (ASCVD) risk are urgently needed. Due to major improvements in assay techniques, multimarker proteomic and lipidomic panels hold the promise to be reliably assessed in a high-throughput routine. Novel machine learning-based approaches have facilitated the use of this high-dimensional data resulting from these analyses for ASCVD risk prediction. More than a dozen of large-scale retrospective studies using different sets of biomarkers and different statistical methods have consistently demonstrated the additive prognostic value of these panels over traditionally used clinical risk scores. Prospective studies are needed to determine the clinical utility of a biomarker panel in clinical ASCVD risk stratification. When combined with the genetic predisposition captured with polygenic risk scores and the actual ASCVD phenotype observed with coronary artery imaging, proteomics and lipidomics can advance understanding of the complex multifactorial causes underlying an individual's ASCVD risk.

摘要

鉴于临床上使用的风险评分(如系统性冠状动脉风险评估 2 系统和第二动脉疾病表现 2 风险评分)的准确性有限,迫切需要新的风险算法来确定个体未来发生或复发动脉粥样硬化性心血管疾病(ASCVD)的风险。由于检测技术的重大改进,多标志物蛋白组学和脂质组学面板有望在高通量常规中进行可靠评估。基于新型机器学习的方法促进了这些分析产生的高维数据在 ASCVD 风险预测中的应用。多项使用不同生物标志物集和不同统计方法的大型回顾性研究一致表明,这些面板对传统临床风险评分具有附加预后价值。需要前瞻性研究来确定生物标志物面板在临床 ASCVD 风险分层中的临床实用性。当与多基因风险评分所捕获的遗传易感性以及冠状动脉成像所观察到的实际 ASCVD 表型相结合时,蛋白质组学和脂质组学可以深入了解个体 ASCVD 风险背后复杂的多因素原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c729/10163980/1c24039575a7/ehad161_ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验