Suppr超能文献

工程 MoS/MXene 异质结构,用于使用临床标本进行精确和非侵入性的前列腺癌诊断。

Engineering the MoS /MXene Heterostructure for Precise and Noninvasive Diagnosis of Prostate Cancer with Clinical Specimens.

机构信息

Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.

Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.

出版信息

Adv Sci (Weinh). 2023 May;10(15):e2206494. doi: 10.1002/advs.202206494. Epub 2023 Mar 29.

Abstract

High-throughput metabolic fingerprinting has been deemed one of the most promising strategies for addressing the high false positive rate of prostate cancer (PCa) diagnosis in the prostate-specific antigen (PSA) gray zone. However, the current metabolic fingerprinting remains challenging in achieving high-precision metabolite detection in complex biological samples (e.g., serum and urine). Herein, a novel self-assembly MoS /MXene heterostructure nanocomposite with a tailored doping ratio of 10% is presented as a matrix for laser desorption ionization mass spectrometry analysis in clinical biosamples. Notably, owing to the two-dimensional architecture and doping effect, MoS /MXene demonstrates favorable laser desorption ionization performance with low adsorption energy, which is evidenced by efficient urinary metabolic fingerprinting with an enhanced area under curve (AUC) diagnosis capability of 0.959 relative to that of serum metabolic fingerprinting (AUC = 0.902) for the diagnosis of PCa in the PSA gray zone. Thus, this MoS /MXene heterostructure is anticipated to offer a novel strategy to precisely and noninvasively diagnose PCa in the PSA gray zone.

摘要

高通量代谢指纹图谱被认为是解决前列腺特异性抗原(PSA)灰区前列腺癌(PCa)诊断中高假阳性率的最有前途的策略之一。然而,目前的代谢指纹图谱在实现复杂生物样本(如血清和尿液)中高精准代谢物检测方面仍然具有挑战性。在此,我们提出了一种新型的自组装 MoS /MXene 杂化纳米复合材料,其掺杂比为 10%,可作为用于临床生物样本激光解吸电离质谱分析的基质。值得注意的是,由于二维结构和掺杂效应,MoS /MXene 表现出良好的激光解吸电离性能,具有较低的吸附能,这可以通过有效的尿液代谢指纹图谱得到证明,与血清代谢指纹图谱相比,其曲线下面积(AUC)诊断能力增强,用于诊断 PSA 灰区的 PCa 的 AUC 为 0.959(AUC = 0.902)。因此,这种 MoS /MXene 杂化结构有望为精确、非侵入性地诊断 PSA 灰区的 PCa 提供一种新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5535/10214233/7bd22cb3a768/ADVS-10-2206494-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验