Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.
Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
Basic Res Cardiol. 2023 Mar 29;118(1):13. doi: 10.1007/s00395-023-00984-5.
The prospective use of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) for cardiac regenerative medicine strongly depends on the electro-mechanical properties of these cells, especially regarding the Ca-dependent excitation-contraction (EC) coupling mechanism. Currently, the immature structural and functional features of hiPSC-CM limit the progression towards clinical applications. Here, we show that a specific microarchitecture is essential for functional maturation of hiPSC-CM. Structural remodelling towards a cuboid cell shape and induction of BIN1, a facilitator of membrane invaginations, lead to transverse (t)-tubule-like structures. This transformation brings two Ca channels critical for EC coupling in close proximity, the L-type Ca channel at the sarcolemma and the ryanodine receptor at the sarcoplasmic reticulum. Consequently, the Ca-dependent functional interaction of these channels becomes more efficient, leading to improved spatio-temporal synchronisation of Ca transients and higher EC coupling gain. Thus, functional maturation of hiPSC-cardiomyocytes by optimised cell microarchitecture needs to be considered for future cardiac regenerative approaches.
人诱导多能干细胞衍生的心肌细胞(hiPSC-CM)在心脏再生医学中的预期应用强烈依赖于这些细胞的电机械特性,特别是关于 Ca 依赖性兴奋-收缩(EC)偶联机制。目前,hiPSC-CM 的不成熟结构和功能特征限制了其向临床应用的进展。在这里,我们表明特定的微观结构对于 hiPSC-CM 的功能成熟至关重要。朝着长方体细胞形状的结构重塑和 BIN1 的诱导,促进了横向(t)-小管样结构的形成。这种转化使两个对 EC 偶联至关重要的 Ca 通道靠近,质膜上的 L 型 Ca 通道和肌浆网上的兰尼碱受体。因此,这些通道的 Ca 依赖性功能相互作用变得更加有效,导致 Ca 瞬变的时空同步性提高和 EC 偶联增益提高。因此,为了未来的心脏再生方法,需要考虑通过优化细胞微结构来实现 hiPSC-心肌细胞的功能成熟。