Suppr超能文献

在单个人类诱导多能干细胞衍生的心肌细胞上进行多重物理刺激以调节表型。

Multiplexing physical stimulation on single human induced pluripotent stem cell-derived cardiomyocytes for phenotype modulation.

机构信息

Department of Materials, Imperial College London, London, United Kingdom.

Department of Bioengineering, Imperial College London, London, United Kingdom.

出版信息

Biofabrication. 2021 Mar 12;13(2):025004. doi: 10.1088/1758-5090/abce0a.

Abstract

Traditional in vitro bioengineering approaches whereby only individual biophysical cues are manipulated at any one time are highly inefficient, falling short when recapitulating the complexity of the cardiac environment. Multiple biophysical cues are present in the native myocardial niche and are essential during development, as well as in maintenance of adult cardiomyocyte (CM) phenotype in both health and disease. This study establishes a novel biofabrication workflow to study and manipulate hiPSC-CMs and to understand how these cells respond to a multiplexed biophysical environment, namely 3D shape and substrate stiffness, at a single cell level. Silicon masters were fabricated and developed to generate inverse patterns of the desired 3D shapes in bas relief, which then were used to mold the designed microwell arrays into a hydrogel. Polyacrylamide (PAAm) was modified with the incorporation of acrylic acid to provide a carboxylic group conjugation site for adhesion motifs, without compromising capacity to modulate stiffness. In this manner, two individual parameters can be finely tuned independently within the hydrogel: the shape of the 3D microwell and its stiffness. The design allows the platform to isolate single hiPSC-CMs to study solely biophysical cues in the absence of cell-cell physical interaction. Under physiologic-like physical conditions (3D shape resembling that of adult CM and 9.83 kPa substrate stiffness that mimics muscle stiffness), isolated single hiPSC-CMs exhibit increased Cx-43 density, cell membrane stiffness and calcium transient amplitude; co-expression of the subpopulation-related MYL2-MYL7 proteins; and higher anisotropism than cells in pathologic-like conditions (flat surface and 112 kPa substrate stiffness). This demonstrates that supplying a physiologic or pathologic microenvironment to an isolated single hiPSC-CM in the absence of any physical cell-to-cell communication in this biofabricated platform leads to a significantly different set of cellular features, thus presenting a differential phenotype. Importantly, this demonstrates the high plasticity of hiPSC-CMs even in isolation. The ability of multiple biophysical cues to significantly influence isolated single hiPSC-CM phenotype and functionality highlights the importance of fine-tuning such cues for specific applications. This has the potential to produce more fit-for-purpose hiPSC-CMs. Further understanding of human cardiac development is enabled by the robust, versatile and reproducible biofabrication techniques applied here. We envision that this system could be easily applied to other tissues and cell types where the influence of cellular shape and stiffness of the surrounding environment is hypothesized to play an important role in physiology.

摘要

传统的体外生物工程方法一次只能操纵单个生物物理线索,效率非常低,无法重现心脏环境的复杂性。在天然心肌龛中存在多种生物物理线索,这些线索在发育过程中以及在健康和疾病状态下维持成人心肌细胞(CM)表型中都是必不可少的。本研究建立了一种新的生物制造工作流程,用于研究和操纵 hiPSC-CM,并了解这些细胞如何在单细胞水平上对多生物物理环境(即 3D 形状和基质硬度)做出反应。硅模具被制造出来,并开发出用于在浮雕中生成所需 3D 形状的反向图案的方法,然后使用该方法将设计的微井阵列模制成水凝胶。聚丙酰胺(PAAm)经过改良,加入丙烯酸以提供用于粘附基序的羧基共轭位点,同时不影响调节硬度的能力。通过这种方式,可以在水凝胶中独立地精细调节两个单独的参数:3D 微井的形状及其硬度。该设计允许平台隔离单个 hiPSC-CM,以在不存在细胞间物理相互作用的情况下仅研究生物物理线索。在类似生理的物理条件下(形状类似于成人 CM 的 3D 形状,基质硬度为 9.83kPa,模拟肌肉硬度),分离的单个 hiPSC-CM 表现出更高的 Cx-43 密度、细胞膜硬度和钙瞬变幅度;亚群相关 MYL2-MYL7 蛋白的共表达;以及高于病理样条件下的各向异性(平面和 112kPa 基质硬度)。这表明,在这种生物制造平台中,为单个 hiPSC-CM 提供生理或病理微环境,而不存在任何细胞间的物理通讯,会导致细胞特征明显不同,从而表现出不同的表型。重要的是,即使在分离状态下,这也表明 hiPSC-CM 具有很高的可塑性。多个生物物理线索显著影响分离的单个 hiPSC-CM 表型和功能,这突出了精细调整这些线索以满足特定应用的重要性。这有可能产生更适合目的的 hiPSC-CM。通过应用此处的强大、多功能和可重复的生物制造技术,进一步了解人类心脏发育。我们设想,该系统可以很容易地应用于其他组织和细胞类型,在这些组织和细胞类型中,周围环境的细胞形状和硬度对生理功能有重要影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验