Suppr超能文献

不同作物模型在模拟土壤温度方面的性能。

Performance of Different Crop Models in Simulating Soil Temperature.

机构信息

Sid and Reva Dewberry Department of Civil, Environmental, and Infrastructure Engineering, George Mason University, Fairfax, VA 22042, USA.

Department of Geography and Geoinformation Science, George Mason University, Fairfax, VA 22042, USA.

出版信息

Sensors (Basel). 2023 Mar 7;23(6):2891. doi: 10.3390/s23062891.

Abstract

Soil temperature is one of the key factors to be considered in precision agriculture to increase crop production. This study is designed to compare the effectiveness of a land surface model (Noah Multiparameterization (Noah-MP)) against a traditional crop model (Environmental Policy Integrated Climate Model (EPIC)) in estimating soil temperature. A sets of soil temperature estimates, including three different EPIC simulations (i.e., using different parameterizations) and a Noah-MP simulations, is compared to ground-based measurements from across the Central Valley in California, USA, during 2000-2019. The main conclusion is that relying only on one set of model estimates may not be optimal. Furthermore, by combining different model simulations, i.e., by taking the mean of two model simulations to reconstruct a new set of soil temperature estimates, it is possible to improve the performance of the single model in terms of different statistical metrics against the reference ground observations. Containing ratio (CR), Euclidean distance (dist), and correlation co-efficient (R) calculated for the reconstructed mean improved by 52%, 58%, and 10%, respectively, compared to both model estimates. Thus, the reconstructed mean estimates are shown to be more capable of capturing soil temperature variations under different soil characteristics and across different geographical conditions when compared to the parent model simulations.

摘要

土壤温度是精准农业中需要考虑的关键因素之一,以提高作物产量。本研究旨在比较土地表面模型(Noah 多参数化模型(Noah-MP))和传统作物模型(综合环境政策气候模型(EPIC))在估计土壤温度方面的有效性。一组土壤温度估计值,包括三种不同的 EPIC 模拟(即使用不同的参数化)和 Noah-MP 模拟,与 2000-2019 年期间美国加利福尼亚州中央谷的地面测量值进行了比较。主要结论是,仅依赖一组模型估计值可能不是最优的。此外,通过结合不同的模型模拟,即通过取两个模型模拟的平均值来重建一组新的土壤温度估计值,可以提高单个模型在不同统计指标上相对于参考地面观测值的性能。与模型估计值相比,重建平均值的包含比(CR)、欧几里得距离(dist)和相关系数(R)分别提高了 52%、58%和 10%。因此,与原始模型模拟相比,重建平均值估计值在不同土壤特性和不同地理位置下更能捕捉土壤温度变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47af/10055684/9c3089141b65/sensors-23-02891-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验