Suppr超能文献

基于视觉Transformer的心脏磁共振弛豫定量图像左心室检测。

Left Ventricle Detection from Cardiac Magnetic Resonance Relaxometry Images Using Visual Transformer.

机构信息

Department of Information Engineering, University of Pisa, 56122 Pisa, Italy.

U.O.C. Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy.

出版信息

Sensors (Basel). 2023 Mar 21;23(6):3321. doi: 10.3390/s23063321.

Abstract

Left Ventricle (LV) detection from Cardiac Magnetic Resonance (CMR) imaging is a fundamental step, preliminary to myocardium segmentation and characterization. This paper focuses on the application of a Visual Transformer (ViT), a novel neural network architecture, to automatically detect LV from CMR relaxometry sequences. We implemented an object detector based on the ViT model to identify LV from CMR multi-echo T2* sequences. We evaluated performances differentiated by slice location according to the American Heart Association model using 5-fold cross-validation and on an independent dataset of CMR T2*, T2, and T1 acquisitions. To the best of our knowledge, this is the first attempt to localize LV from relaxometry sequences and the first application of ViT for LV detection. We collected an Intersection over Union (IoU) index of 0.68 and a Correct Identification Rate (CIR) of blood pool centroid of 0.99, comparable with other state-of-the-art methods. IoU and CIR values were significantly lower in apical slices. No significant differences in performances were assessed on independent T2* dataset (IoU = 0.68, = 0.405; CIR = 0.94, = 0.066). Performances were significantly worse on the T2 and T1 independent datasets (T2: IoU = 0.62, CIR = 0.95; T1: IoU = 0.67, CIR = 0.98), but still encouraging considering the different types of acquisition. This study confirms the feasibility of the application of ViT architectures in LV detection and defines a benchmark for relaxometry imaging.

摘要

从心脏磁共振(CMR)成像中检测左心室(LV)是一个基本步骤,是心肌分段和特征化的前提。本文专注于应用视觉Transformer(ViT),一种新颖的神经网络架构,自动从 CMR 弛豫序列中检测 LV。我们实现了一种基于 ViT 模型的目标检测器,用于从 CMR 多回波 T2序列中识别 LV。我们根据美国心脏协会模型按切片位置进行了性能评估,使用 5 倍交叉验证和独立的 CMR T2、T2 和 T1 采集数据集进行了评估。据我们所知,这是首次尝试从弛豫序列中定位 LV,也是首次将 ViT 应用于 LV 检测。我们收集的交并比(IoU)指数为 0.68,血池质心的正确识别率(CIR)为 0.99,与其他最先进的方法相当。在顶部切片中,IoU 和 CIR 值明显较低。在独立的 T2*数据集上,性能评估没有显著差异(IoU = 0.68, = 0.405;CIR = 0.94, = 0.066)。在独立的 T2 和 T1 数据集上,性能明显更差(T2:IoU = 0.62,CIR = 0.95;T1:IoU = 0.67,CIR = 0.98),但考虑到不同的采集类型,仍然令人鼓舞。本研究证实了 ViT 架构在 LV 检测中的应用的可行性,并为弛豫成像定义了一个基准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9de7/10052975/4d75ab9413f9/sensors-23-03321-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验