Suppr超能文献

BIBSNet:一种用于MRI扫描的深度学习婴儿图像脑部分割网络。

BIBSNet: A Deep Learning Baby Image Brain Segmentation Network for MRI Scans.

作者信息

Hendrickson Timothy J, Reiners Paul, Moore Lucille A, Lundquist Jacob T, Fayzullobekova Begim, Perrone Anders J, Lee Erik G, Moser Julia, Day Trevor K M, Alexopoulos Dimitrios, Styner Martin, Kardan Omid, Chamberlain Taylor A, Mummaneni Anurima, Caldas Henrique A, Bower Brad, Stoyell Sally, Martin Tabitha, Sung Sooyeon, Fair Ermias A, Carter Kenevan, Uriarte-Lopez Jonathan, Rueter Amanda R, Yacoub Essa, Rosenberg Monica D, Smyser Christopher D, Elison Jed T, Graham Alice, Fair Damien A, Feczko Eric

出版信息

bioRxiv. 2025 Jan 11:2023.03.22.533696. doi: 10.1101/2023.03.22.533696.

Abstract

OBJECTIVES

Brain segmentation of infant magnetic resonance (MR) images is vitally important for studying typical and atypical brain development. The infant brain undergoes many changes throughout the first years of postnatal life, making tissue segmentation difficult for most existing algorithms. Here we introduce a deep neural network BIBSNet ( aby and nfant rain egmentation Neural work), an open-source, community-driven model for robust and generalizable brain segmentation leveraging data augmentation and a large sample size of manually annotated images.

EXPERIMENTAL DESIGN

Included in model training and testing were MR brain images from 90 participants with an age range of 0-8 months (median age 4.6 months). Using the BOBs repository of manually annotated real images along with synthetic segmentation images produced using SynthSeg, the model was trained using a 10-fold procedure. Model performance of segmentations was assessed by comparing BIBSNet, joint label fusion (JLF) inferred segmentation to ground truth segmentations using Dice Similarity Coefficient (DSC). Additionally, MR data along with the FreeSurfer compatible segmentations were processed with the DCAN labs infant-ABCD-BIDS processing pipeline from ground truth, JLF, and BIBSNet to further assess model performance on derivative data, including cortical thickness, resting state connectivity and brain region volumes.

PRINCIPAL OBSERVATIONS

BIBSNet segmentations outperforms JLF across all regions based on DSC comparisons. Additionally, with processed derived metrics, BIBSNet segmentations outperforms JLF segmentations across nearly all metrics.

CONCLUSIONS

BIBSNet segmentation shows marked improvement over JLF across all age groups analyzed. The BIBSNet model is 600x faster compared to JLF, produces FreeSurfer-compatible segmentation labels, and can be easily included in other processing pipelines. BIBSNet provides a viable alternative for segmenting the brain in the earliest stages of development.

摘要

目的

婴儿磁共振(MR)图像的脑部分割对于研究典型和非典型脑发育至关重要。婴儿大脑在出生后的头几年会经历许多变化,这使得大多数现有算法进行组织分割变得困难。在此,我们引入了一种深度神经网络BIBSNet(婴儿脑部分割神经网络),这是一个开源的、由社区驱动的模型,用于通过数据增强和大量手动标注图像的样本量进行稳健且可推广的脑部分割。

实验设计

模型训练和测试中纳入了90名年龄在0 - 8个月(中位年龄4.6个月)参与者的MR脑图像。利用手动标注的真实图像的BOBs存储库以及使用SynthSeg生成的合成分割图像,该模型采用10折交叉验证法进行训练。通过使用骰子相似系数(DSC)将BIBSNet、联合标签融合(JLF)推断的分割与地面真值分割进行比较,来评估分割的模型性能。此外,将MR数据以及与FreeSurfer兼容的分割结果通过DCAN实验室的婴儿-ABCD-BIDS处理管道从地面真值、JLF和BIBSNet进行处理,以进一步评估模型在派生数据上的性能,包括皮质厚度、静息态连接性和脑区体积。

主要观察结果

基于DSC比较,BIBSNet分割在所有区域均优于JLF。此外,在处理后的派生指标方面,BIBSNet分割在几乎所有指标上均优于JLF分割。

结论

在所有分析的年龄组中,BIBSNet分割均显示出比JLF有显著改进。BIBSNet模型比JLF快600倍,生成与FreeSurfer兼容的分割标签,并且可以轻松纳入其他处理管道。BIBSNet为在发育的最早阶段进行脑部分割提供了一种可行的替代方案。

相似文献

1
BIBSNet: A Deep Learning Baby Image Brain Segmentation Network for MRI Scans.
bioRxiv. 2025 Jan 11:2023.03.22.533696. doi: 10.1101/2023.03.22.533696.
4
Influence of early through late fusion on pancreas segmentation from imperfectly registered multimodal magnetic resonance imaging.
J Med Imaging (Bellingham). 2025 Mar;12(2):024008. doi: 10.1117/1.JMI.12.2.024008. Epub 2025 Apr 26.
5
Semi-Supervised Learning Allows for Improved Segmentation With Reduced Annotations of Brain Metastases Using Multicenter MRI Data.
J Magn Reson Imaging. 2025 Jun;61(6):2469-2479. doi: 10.1002/jmri.29686. Epub 2025 Jan 10.
7
Characterizing Breast Tumor Heterogeneity Through IVIM-DWI Parameters and Signal Decay Analysis.
Diagnostics (Basel). 2025 Jun 12;15(12):1499. doi: 10.3390/diagnostics15121499.

本文引用的文献

1
Baby Brains at Work: How Task-Based Functional Magnetic Resonance Imaging Can Illuminate the Early Emergence of Psychiatric Risk.
Biol Psychiatry. 2023 May 15;93(10):880-892. doi: 10.1016/j.biopsych.2023.01.010. Epub 2023 Jan 20.
2
iBEAT V2.0: a multisite-applicable, deep learning-based pipeline for infant cerebral cortical surface reconstruction.
Nat Protoc. 2023 May;18(5):1488-1509. doi: 10.1038/s41596-023-00806-x. Epub 2023 Mar 3.
3
Resting-state functional connectivity identifies individuals and predicts age in 8-to-26-month-olds.
Dev Cogn Neurosci. 2022 Aug;56:101123. doi: 10.1016/j.dcn.2022.101123. Epub 2022 Jun 15.
4
Brain charts for the human lifespan.
Nature. 2022 Apr;604(7906):525-533. doi: 10.1038/s41586-022-04554-y. Epub 2022 Apr 6.
5
6
Synthesizing pseudo-T2w images to recapture missing data in neonatal neuroimaging with applications in rs-fMRI.
Neuroimage. 2022 Jun;253:119091. doi: 10.1016/j.neuroimage.2022.119091. Epub 2022 Mar 11.
7
(Un)common space in infant neuroimaging studies: A systematic review of infant templates.
Hum Brain Mapp. 2022 Jun 15;43(9):3007-3016. doi: 10.1002/hbm.25816. Epub 2022 Mar 9.
8
nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation.
Nat Methods. 2021 Feb;18(2):203-211. doi: 10.1038/s41592-020-01008-z. Epub 2020 Dec 7.
9
Towards HCP-Style macaque connectomes: 24-Channel 3T multi-array coil, MRI sequences and preprocessing.
Neuroimage. 2020 Jul 15;215:116800. doi: 10.1016/j.neuroimage.2020.116800. Epub 2020 Apr 8.
10
Deep CNN ensembles and suggestive annotations for infant brain MRI segmentation.
Comput Med Imaging Graph. 2020 Jan;79:101660. doi: 10.1016/j.compmedimag.2019.101660. Epub 2019 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验