Guo Boyi, Huuki-Myers Louise A, Grant-Peters Melissa, Collado-Torres Leonardo, Hicks Stephanie C
Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, MD, USA.
Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA.
bioRxiv. 2023 Jun 8:2023.03.18.533302. doi: 10.1101/2023.03.18.533302.
The creation of effective visualizations is a fundamental component of data analysis. In biomedical research, new challenges are emerging to visualize multi-dimensional data in a 2D space, but current data visualization tools have limited capabilities. To address this problem, we leverage Gestalt principles to improve the design and interpretability of multi-dimensional data in 2D data visualizations, layering aesthetics to display multiple variables. The proposed visualization can be applied to spatially-resolved transcriptomics data, but also broadly to data visualized in 2D space, such as embedding visualizations. We provide an open source R package escheR, which is built off of the state-of-the-art ggplot2 visualization framework and can be seamlessly integrated into genomics toolboxes and workflows.
创建有效的可视化是数据分析的一个基本组成部分。在生物医学研究中,在二维空间中可视化多维数据正面临新的挑战,但当前的数据可视化工具功能有限。为了解决这个问题,我们利用格式塔原则来改进二维数据可视化中多维数据的设计和可解释性,通过分层美学来显示多个变量。所提出的可视化方法不仅可以应用于空间分辨转录组学数据,还可以广泛应用于二维空间中可视化的数据,如嵌入可视化。我们提供了一个开源的R包escheR,它基于最先进的ggplot2可视化框架构建,可以无缝集成到基因组学工具箱和工作流程中。