Suppr超能文献

用于改善情景记忆的闭环神经调节设备设计中电极选择的机器学习分类器。

Machine learning classifiers for electrode selection in the design of closed-loop neuromodulation devices for episodic memory improvement.

机构信息

Department of Neurosurgery, The University of Texas - Southwestern Medical Center, Dallas, Texas 75390, United States.

Department of Neuroscience, University of Arizona, Tucson, Arizona 85721, United States.

出版信息

Cereb Cortex. 2023 Jun 20;33(13):8150-8163. doi: 10.1093/cercor/bhad105.

Abstract

Successful neuromodulation approaches to alter episodic memory require closed-loop stimulation predicated on the effective classification of brain states. The practical implementation of such strategies requires prior decisions regarding electrode implantation locations. Using a data-driven approach, we employ support vector machine (SVM) classifiers to identify high-yield brain targets on a large data set of 75 human intracranial electroencephalogram subjects performing the free recall (FR) task. Further, we address whether the conserved brain regions provide effective classification in an alternate (associative) memory paradigm along with FR, as well as testing unsupervised classification methods that may be a useful adjunct to clinical device implementation. Finally, we use random forest models to classify functional brain states, differentiating encoding versus retrieval versus non-memory behavior such as rest and mathematical processing. We then test how regions that exhibit good classification for the likelihood of recall success in the SVM models overlap with regions that differentiate functional brain states in the random forest models. Finally, we lay out how these data may be used in the design of neuromodulation devices.

摘要

成功的神经调节方法来改变情景记忆需要基于大脑状态的有效分类的闭环刺激。这种策略的实际实施需要预先决定电极植入的位置。我们使用数据驱动的方法,使用支持向量机(SVM)分类器在执行自由回忆(FR)任务的 75 个人类颅内脑电图受试者的大数据集中识别高产的大脑目标。此外,我们还研究了在 FR 以外的另一种(联想)记忆范式中,保守的大脑区域是否能提供有效的分类,以及测试可能对临床设备实施有用的无监督分类方法。最后,我们使用随机森林模型对功能脑状态进行分类,区分编码、检索与非记忆行为,如休息和数学处理。然后,我们测试在 SVM 模型中预测回忆成功可能性的分类良好的区域与在随机森林模型中区分功能脑状态的区域之间的重叠情况。最后,我们说明了如何使用这些数据来设计神经调节设备。

相似文献

5
Audit and feedback: effects on professional practice.审核与反馈:对专业实践的影响
Cochrane Database Syst Rev. 2025 Mar 25;3(3):CD000259. doi: 10.1002/14651858.CD000259.pub4.

本文引用的文献

1
Temporopolar regions of the human brain.人类大脑的颞极区域。
Brain. 2023 Jan 5;146(1):20-41. doi: 10.1093/brain/awac339.
3
Deep Brain Stimulation for Depression Informed by Intracranial Recordings.颅内记录指导的抑郁症深部脑刺激
Biol Psychiatry. 2022 Aug 1;92(3):246-251. doi: 10.1016/j.biopsych.2021.11.007. Epub 2021 Nov 22.
6
High-performance brain-to-text communication via handwriting.通过手写实现高性能的脑-文本通信。
Nature. 2021 May;593(7858):249-254. doi: 10.1038/s41586-021-03506-2. Epub 2021 May 12.
9
Biomarkers of memory variability in traumatic brain injury.创伤性脑损伤中记忆变异性的生物标志物。
Brain Commun. 2020 Dec 15;3(1):fcaa202. doi: 10.1093/braincomms/fcaa202. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验