Department of Neurosurgery, The University of Texas - Southwestern Medical Center, Dallas, Texas 75390, United States.
Department of Neuroscience, University of Arizona, Tucson, Arizona 85721, United States.
Cereb Cortex. 2023 Jun 20;33(13):8150-8163. doi: 10.1093/cercor/bhad105.
Successful neuromodulation approaches to alter episodic memory require closed-loop stimulation predicated on the effective classification of brain states. The practical implementation of such strategies requires prior decisions regarding electrode implantation locations. Using a data-driven approach, we employ support vector machine (SVM) classifiers to identify high-yield brain targets on a large data set of 75 human intracranial electroencephalogram subjects performing the free recall (FR) task. Further, we address whether the conserved brain regions provide effective classification in an alternate (associative) memory paradigm along with FR, as well as testing unsupervised classification methods that may be a useful adjunct to clinical device implementation. Finally, we use random forest models to classify functional brain states, differentiating encoding versus retrieval versus non-memory behavior such as rest and mathematical processing. We then test how regions that exhibit good classification for the likelihood of recall success in the SVM models overlap with regions that differentiate functional brain states in the random forest models. Finally, we lay out how these data may be used in the design of neuromodulation devices.
成功的神经调节方法来改变情景记忆需要基于大脑状态的有效分类的闭环刺激。这种策略的实际实施需要预先决定电极植入的位置。我们使用数据驱动的方法,使用支持向量机(SVM)分类器在执行自由回忆(FR)任务的 75 个人类颅内脑电图受试者的大数据集中识别高产的大脑目标。此外,我们还研究了在 FR 以外的另一种(联想)记忆范式中,保守的大脑区域是否能提供有效的分类,以及测试可能对临床设备实施有用的无监督分类方法。最后,我们使用随机森林模型对功能脑状态进行分类,区分编码、检索与非记忆行为,如休息和数学处理。然后,我们测试在 SVM 模型中预测回忆成功可能性的分类良好的区域与在随机森林模型中区分功能脑状态的区域之间的重叠情况。最后,我们说明了如何使用这些数据来设计神经调节设备。