Department of Clinical Pharmacy, Faculty of Pharmacy, Hacettepe University, 06230, Ankara, Turkey.
Department of Biostatistics, Faculty of Medicine, Hacettepe University, 06230, Ankara, Turkey.
Sci Rep. 2023 Mar 30;13(1):5227. doi: 10.1038/s41598-023-32570-z.
Hospitalized newborns have an increased risk of malnutrition and, especially preterm infants, often experience malnutrition-related extrauterine growth restriction (EUGR). The aim of this study was to predict the discharge weight and the presence of weight gain at discharge with machine learning (ML) algorithms. The demographic and clinical parameters were used to develop the models using fivefold cross-validation in the software-R with a neonatal nutritional screening tool (NNST). A total of 512 NICU patients were prospectively included in the study. Length of hospital stay (LOS), parenteral nutrition treatment (PN), postnatal age (PNA), surgery, and sodium were the most important variables in predicting the presence of weight gain at discharge with a random forest classification (AUROC:0.847). The AUROC of NNST-Plus, which was improved by adding LOS, PN, PNA, surgery, and sodium to NNST, increased by 16.5%. In addition, weight at admission, LOS, gestation-adjusted age at admission (> 40 weeks), sex, gestational age, birth weight, PNA, SGA, complications of labor and delivery, multiple birth, serum creatinine, and PN treatment were the most important variables in predicting discharge weight with an elastic net regression (R = 0.748). This is the first study on the early prediction of EUGR with promising clinical performance based on ML algorithms. It is estimated that the incidence of EUGR can be improved with the implementation of this ML-based web tool ( http://www.softmed.hacettepe.edu.tr/NEO-DEER/ ) in clinical practice.
住院新生儿有发生营养不良的风险,尤其是早产儿,常经历与营养相关的宫外生长受限(EUGR)。本研究旨在使用机器学习(ML)算法预测出院体重和出院时体重增加的情况。使用软件-R 中的五重交叉验证和新生儿营养筛查工具(NNST),利用人口统计学和临床参数来开发模型。共有 512 名 NICU 患者前瞻性纳入本研究。住院时间(LOS)、肠外营养治疗(PN)、生后年龄(PNA)、手术和钠是预测出院时体重增加的最重要变量,随机森林分类的 AUC 为 0.847。通过在 NNST 中添加 LOS、PN、PNA、手术和钠,NNST-Plus 的 AUC 增加了 16.5%。此外,入院体重、LOS、入院时校正胎龄(>40 周)、性别、胎龄、出生体重、PNA、SGA、分娩并发症、多胎、血清肌酐和 PN 治疗是预测出院体重的最重要变量,弹性网回归的 R 为 0.748。这是第一项使用 ML 算法预测 EUGR 的早期研究,具有有前景的临床性能。预计通过在临床实践中实施这个基于 ML 的网络工具(http://www.softmed.hacettepe.edu.tr/NEO-DEER/),EUGR 的发生率可以得到改善。