Suppr超能文献

计算方法预测早产和新生儿结局。

Computational Approaches for Predicting Preterm Birth and Newborn Outcomes.

机构信息

Immunology Program, Stanford University School of Medicine, 300 Pasteur Drive, Grant S280, Stanford, CA 94305-5117, USA; Medical Scientist Training Program, Stanford University School of Medicine, 300 Pasteur Drive, Grant S280, Stanford, CA 94305-5117, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, 300 Pasteur Drive, Grant S280, Stanford, CA 94305-5117, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, 300 Pasteur Drive, Grant S280, Stanford, CA 94305-5117, USA.

Immunology Program, Stanford University School of Medicine, 300 Pasteur Drive, Grant S280, Stanford, CA 94305-5117, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, 300 Pasteur Drive, Grant S280, Stanford, CA 94305-5117, USA; Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Drive, Grant S280, Stanford, CA 94305-5117, USA; Department of Biomedical Data Science, Stanford University, 300 Pasteur Drive, Grant S280, Stanford, CA 94305-5117, USA.

出版信息

Clin Perinatol. 2024 Jun;51(2):461-473. doi: 10.1016/j.clp.2024.02.005. Epub 2024 Mar 8.

Abstract

Preterm birth (PTB) and its associated morbidities are a leading cause of infant mortality and morbidity. Accurate predictive models and a better biological understanding of PTB-associated morbidities are critical in reducing their adverse effects. Increasing availability of multimodal high-dimensional data sets with concurrent advances in artificial intelligence (AI) have created a rich opportunity to gain novel insights into PTB, a clinically complex and multifactorial disease. Here, the authors review the use of AI to analyze 3 modes of data: electronic health records, biological omics, and social determinants of health metrics.

摘要

早产(PTB)及其相关并发症是导致婴儿死亡和发病的主要原因。准确的预测模型和对与 PTB 相关并发症的更好的生物学理解对于降低其不良影响至关重要。随着多模态高维数据集的可用性不断增加,以及人工智能(AI)的同步进步,为深入了解临床复杂且多因素的疾病 PTB 提供了新的机会。在这里,作者回顾了使用 AI 分析 3 种类型的数据:电子健康记录、生物组学和健康指标的社会决定因素。

相似文献

1
Computational Approaches for Predicting Preterm Birth and Newborn Outcomes.计算方法预测早产和新生儿结局。
Clin Perinatol. 2024 Jun;51(2):461-473. doi: 10.1016/j.clp.2024.02.005. Epub 2024 Mar 8.
3
Perinatal health predictors using artificial intelligence: A review.利用人工智能预测围产期健康:综述。
Womens Health (Lond). 2021 Jan-Dec;17:17455065211046132. doi: 10.1177/17455065211046132.
8
Social Determinants of Preterm Birth amongst Non-Hispanic Black Individuals.非西班牙裔黑人早产的社会决定因素
Am J Perinatol. 2025 Apr;42(6):781-787. doi: 10.1055/a-2419-9229. Epub 2024 Sep 24.
9
Towards an Explainable AI-Based Tool to Predict Preterm Birth.基于可解释 AI 的早产预测工具研究
Stud Health Technol Inform. 2023 May 18;302:571-575. doi: 10.3233/SHTI230207.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验