Suppr超能文献

对抗原特异性 CDR3 结构域的熵分析确定了具有不同抗原特异性的 CDR3 之间共享的基本结合基序。

Entropic analysis of antigen-specific CDR3 domains identifies essential binding motifs shared by CDR3s with different antigen specificities.

机构信息

Institute for Systems Biology, Seattle, WA 98109, USA; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.

Institute for Systems Biology, Seattle, WA 98109, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA 91125, USA.

出版信息

Cell Syst. 2023 Apr 19;14(4):273-284.e5. doi: 10.1016/j.cels.2023.03.001. Epub 2023 Mar 30.

Abstract

Antigen-specific T cell receptor (TCR) sequences can have prognostic, predictive, and therapeutic value, but decoding the specificity of TCR recognition remains challenging. Unlike DNA strands that base pair, TCRs bind to their targets with different orientations and different lengths, which complicates comparisons. We present scanning parametrized by normalized TCR length (SPAN-TCR) to analyze antigen-specific TCR CDR3 sequences and identify patterns driving TCR-pMHC specificity. Using entropic analysis, SPAN-TCR identifies 2-mer motifs that decrease the diversity (entropy) of CDR3s. These motifs are the most common patterns that can predict CDR3 composition, and we identify "essential" motifs that decrease entropy in the same CDR3 α or β chain containing the 2-mer, and "super-essential" motifs that decrease entropy in both chains. Molecular dynamics analysis further suggests that these motifs may play important roles in binding. We then employ SPAN-TCR to resolve similarities in TCR repertoires against different antigens using public databases of TCR sequences.

摘要

抗原特异性 T 细胞受体 (TCR) 序列具有预后、预测和治疗价值,但解码 TCR 识别的特异性仍然具有挑战性。与碱基配对的 DNA 链不同,TCR 以不同的方向和不同的长度与它们的靶标结合,这增加了比较的复杂性。我们提出了一种基于 TCR 长度标准化的扫描参数 (SPAN-TCR),用于分析抗原特异性 TCR CDR3 序列并确定驱动 TCR-pMHC 特异性的模式。通过熵分析,SPAN-TCR 确定了降低 CDR3 多样性(熵)的 2 -mer 基序。这些基序是最常见的可预测 CDR3 组成的模式,我们确定了降低同一 CDR3 α 或 β 链中包含 2 -mer 的熵的“必需”基序,以及降低两条链中熵的“超必需”基序。分子动力学分析进一步表明,这些基序可能在结合中发挥重要作用。然后,我们使用 SPAN-TCR 利用 TCR 序列的公共数据库来解决针对不同抗原的 TCR 库之间的相似性。

相似文献

5
Comparative analysis of CDR3 regions in paired human αβ CD8 T cells.
FEBS Open Bio. 2019 Aug;9(8):1450-1459. doi: 10.1002/2211-5463.12690. Epub 2019 Jul 12.
7
Structural motifs in rheumatoid T-cell receptors.
DNA Cell Biol. 1998 Feb;17(2):133-49. doi: 10.1089/dna.1998.17.133.
8
CDR3 length in antigen-specific immune receptors.
J Exp Med. 1994 Jan 1;179(1):323-8. doi: 10.1084/jem.179.1.323.
10
Balancing sensitivity and specificity in distinguishing TCR groups by CDR sequence similarity.
BMC Bioinformatics. 2019 May 15;20(1):241. doi: 10.1186/s12859-019-2864-8.

引用本文的文献

1
Limits on inferring T cell specificity from partial information.
Proc Natl Acad Sci U S A. 2024 Oct 15;121(42):e2408696121. doi: 10.1073/pnas.2408696121. Epub 2024 Oct 7.
2
High-throughput sequencing reveals the change of TCR α chain CDR3 with Takayasu arteritis.
Immun Inflamm Dis. 2023 Dec;11(12):e1122. doi: 10.1002/iid3.1122.

本文引用的文献

1
Deep learning-based prediction of the T cell receptor-antigen binding specificity.
Nat Mach Intell. 2021 Oct;3(10):864-875. doi: 10.1038/s42256-021-00383-2. Epub 2021 Sep 23.
2
Improved prediction of protein-protein interactions using AlphaFold2.
Nat Commun. 2022 Mar 10;13(1):1265. doi: 10.1038/s41467-022-28865-w.
4
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
6
TITAN: T-cell receptor specificity prediction with bimodal attention networks.
Bioinformatics. 2021 Jul 12;37(Suppl_1):i237-i244. doi: 10.1093/bioinformatics/btab294.
8
TCRMatch: Predicting T-Cell Receptor Specificity Based on Sequence Similarity to Previously Characterized Receptors.
Front Immunol. 2021 Mar 11;12:640725. doi: 10.3389/fimmu.2021.640725. eCollection 2021.
9
Use of machine learning to identify a T cell response to SARS-CoV-2.
Cell Rep Med. 2021 Feb 16;2(2):100192. doi: 10.1016/j.xcrm.2021.100192. Epub 2021 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验