文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于高度多重化二聚体作图和预测 T 细胞受体序列与抗原特异性的框架。

A framework for highly multiplexed dextramer mapping and prediction of T cell receptor sequences to antigen specificity.

机构信息

Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.

出版信息

Sci Adv. 2021 May 14;7(20). doi: 10.1126/sciadv.abf5835. Print 2021 May.


DOI:10.1126/sciadv.abf5835
PMID:33990328
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8121425/
Abstract

T cell receptor (TCR) antigen-specific recognition is essential for the adaptive immune system. However, building a TCR-antigen interaction map has been challenging due to the staggering diversity of TCRs and antigens. Accordingly, highly multiplexed dextramer-TCR binding assays have been recently developed, but the utility of the ensuing large datasets is limited by the lack of robust computational methods for normalization and interpretation. Here, we present a computational framework comprising a novel method, ICON (Integrative COntext-specific Normalization), for identifying reliable TCR-pMHC (peptide-major histocompatibility complex) interactions and a neural network-based classifier TCRAI that outperforms other state-of-the-art methods for TCR-antigen specificity prediction. We further demonstrated that by combining ICON and TCRAI, we are able to discover novel subgroups of TCRs that bind to a given pMHC via different mechanisms. Our framework facilitates the identification and understanding of TCR-antigen-specific interactions for basic immunological research and clinical immune monitoring.

摘要

T 细胞受体 (TCR) 抗原特异性识别对于适应性免疫系统至关重要。然而,由于 TCR 和抗原的惊人多样性,构建 TCR-抗原相互作用图谱一直具有挑战性。因此,最近开发了高度多重化的 dextramer-TCR 结合测定法,但由于缺乏用于归一化和解释的强大计算方法,随后产生的大型数据集的实用性受到限制。在这里,我们提出了一个计算框架,包括一种新方法 ICON(综合上下文特异性归一化),用于识别可靠的 TCR-pMHC(肽-主要组织相容性复合物)相互作用,以及基于神经网络的分类器 TCRAI,该分类器在 TCR-抗原特异性预测方面优于其他最先进的方法。我们进一步证明,通过结合 ICON 和 TCRAI,我们能够发现通过不同机制结合给定 pMHC 的 TCR 的新亚群。我们的框架有助于识别和理解 TCR-抗原特异性相互作用,用于基础免疫学研究和临床免疫监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/641b/8121425/493c3289534f/abf5835-F5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/641b/8121425/21c3f2858aaa/abf5835-F1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/641b/8121425/73b405c23278/abf5835-F2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/641b/8121425/2c36f8d2fb11/abf5835-F3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/641b/8121425/8383237263a0/abf5835-F4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/641b/8121425/493c3289534f/abf5835-F5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/641b/8121425/21c3f2858aaa/abf5835-F1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/641b/8121425/73b405c23278/abf5835-F2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/641b/8121425/2c36f8d2fb11/abf5835-F3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/641b/8121425/8383237263a0/abf5835-F4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/641b/8121425/493c3289534f/abf5835-F5.jpg

相似文献

[1]
A framework for highly multiplexed dextramer mapping and prediction of T cell receptor sequences to antigen specificity.

Sci Adv. 2021-5

[2]
MPID-T: database for sequence-structure-function information on T-cell receptor/peptide/MHC interactions.

Appl Bioinformatics. 2006

[3]
Modulation of T cell function by TCR/pMHC binding kinetics.

Immunobiology. 2006

[4]
NetTCR-2.1: Lessons and guidance on how to develop models for TCR specificity predictions.

Front Immunol. 2022

[5]
Structural analysis of cancer-relevant TCR-CD3 and peptide-MHC complexes by cryoEM.

Nat Commun. 2023-4-26

[6]
The Enigmatic Nature of the TCR-pMHC Interaction: Implications for CAR-T and TCR-T Engineering.

Int J Mol Sci. 2022-11-25

[7]
Quantitative approaches for decoding the specificity of the human T cell repertoire.

Front Immunol. 2023

[8]
A flexible docking approach for prediction of T cell receptor-peptide-MHC complexes.

Protein Sci. 2013-1

[9]
Engineering improved T cell receptors using an alanine-scan guided T cell display selection system.

J Immunol Methods. 2013-3-13

[10]
TCR-pMHC interactions: Two peptide repertoires-one signal.

Scand J Immunol. 2018-8-3

引用本文的文献

[1]
TCR-pMHC Binding Specificity Prediction From Structure Using Graph Neural Networks.

IEEE Trans Comput Biol Bioinform. 2025

[2]
A roadmap for T cell receptor-peptide-bound major histocompatibility complex binding prediction by machine learning: glimpse and foresight.

Brief Bioinform. 2025-7-2

[3]
Characterization of human CMV-specific CD8 T cells using multi-layer single-cell omics.

Cell Rep Methods. 2025-7-21

[4]
Biophysical modeling for accurate T cell specificity prediction of viral and tumor antigens.

bioRxiv. 2025-5-28

[5]
Phage display enables machine learning discovery of cancer antigen-specific TCRs.

Sci Adv. 2025-6-13

[6]
TCRCluster: a novel approach to T-cell receptor latent featurization and clustering using contrastive learning-guided two-stage variational autoencoders.

NAR Genom Bioinform. 2025-5-27

[7]
TRAP: a contrastive learning-enhanced framework for robust TCR-pMHC binding prediction with improved generalizability.

Chem Sci. 2025-4-29

[8]
Feature selection enhances peptide binding predictions for TCR-specific interactions.

Front Immunol. 2025-1-23

[9]
TPepRet: a deep learning model for characterizing T-cell receptors-antigen binding patterns.

Bioinformatics. 2024-12-26

[10]
Unveiling cross-reactivity: implications for immune response modulation in cancer.

Brief Bioinform. 2024-11-22

本文引用的文献

[1]
Predicting antigen specificity of single T cells based on TCR CDR3 regions.

Mol Syst Biol. 2020-8

[2]
Investigation of Antigen-Specific T-Cell Receptor Clusters in Human Cancers.

Clin Cancer Res. 2020-3-15

[3]
CDR3α drives selection of the immunodominant Epstein Barr virus (EBV) BRLF1-specific CD8 T cell receptor repertoire in primary infection.

PLoS Pathog. 2019-11-25

[4]
TCR sequencing paired with massively parallel 3' RNA-seq reveals clonotypic T cell signatures.

Nat Immunol. 2019-11-19

[5]
VDJdb in 2019: database extension, new analysis infrastructure and a T-cell receptor motif compendium.

Nucleic Acids Res. 2020-1-8

[6]
T-Cell Receptor Cognate Target Prediction Based on Paired α and β Chain Sequence and Structural CDR Loop Similarities.

Front Immunol. 2019-8-28

[7]
Deep generative models for T cell receptor protein sequences.

Elife. 2019-9-5

[8]
Single T Cell Sequencing Demonstrates the Functional Role of TCR Pairing in Cell Lineage and Antigen Specificity.

Front Immunol. 2019-7-31

[9]
T-Scan: A Genome-wide Method for the Systematic Discovery of T Cell Epitopes.

Cell. 2019-8-8

[10]
Detecting T cell receptors involved in immune responses from single repertoire snapshots.

PLoS Biol. 2019-6-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索