Suppr超能文献

一种用于高度多重化二聚体作图和预测 T 细胞受体序列与抗原特异性的框架。

A framework for highly multiplexed dextramer mapping and prediction of T cell receptor sequences to antigen specificity.

机构信息

Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.

出版信息

Sci Adv. 2021 May 14;7(20). doi: 10.1126/sciadv.abf5835. Print 2021 May.

Abstract

T cell receptor (TCR) antigen-specific recognition is essential for the adaptive immune system. However, building a TCR-antigen interaction map has been challenging due to the staggering diversity of TCRs and antigens. Accordingly, highly multiplexed dextramer-TCR binding assays have been recently developed, but the utility of the ensuing large datasets is limited by the lack of robust computational methods for normalization and interpretation. Here, we present a computational framework comprising a novel method, ICON (Integrative COntext-specific Normalization), for identifying reliable TCR-pMHC (peptide-major histocompatibility complex) interactions and a neural network-based classifier TCRAI that outperforms other state-of-the-art methods for TCR-antigen specificity prediction. We further demonstrated that by combining ICON and TCRAI, we are able to discover novel subgroups of TCRs that bind to a given pMHC via different mechanisms. Our framework facilitates the identification and understanding of TCR-antigen-specific interactions for basic immunological research and clinical immune monitoring.

摘要

T 细胞受体 (TCR) 抗原特异性识别对于适应性免疫系统至关重要。然而,由于 TCR 和抗原的惊人多样性,构建 TCR-抗原相互作用图谱一直具有挑战性。因此,最近开发了高度多重化的 dextramer-TCR 结合测定法,但由于缺乏用于归一化和解释的强大计算方法,随后产生的大型数据集的实用性受到限制。在这里,我们提出了一个计算框架,包括一种新方法 ICON(综合上下文特异性归一化),用于识别可靠的 TCR-pMHC(肽-主要组织相容性复合物)相互作用,以及基于神经网络的分类器 TCRAI,该分类器在 TCR-抗原特异性预测方面优于其他最先进的方法。我们进一步证明,通过结合 ICON 和 TCRAI,我们能够发现通过不同机制结合给定 pMHC 的 TCR 的新亚群。我们的框架有助于识别和理解 TCR-抗原特异性相互作用,用于基础免疫学研究和临床免疫监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/641b/8121425/21c3f2858aaa/abf5835-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验