Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.
Sci Adv. 2021 May 14;7(20). doi: 10.1126/sciadv.abf5835. Print 2021 May.
T cell receptor (TCR) antigen-specific recognition is essential for the adaptive immune system. However, building a TCR-antigen interaction map has been challenging due to the staggering diversity of TCRs and antigens. Accordingly, highly multiplexed dextramer-TCR binding assays have been recently developed, but the utility of the ensuing large datasets is limited by the lack of robust computational methods for normalization and interpretation. Here, we present a computational framework comprising a novel method, ICON (Integrative COntext-specific Normalization), for identifying reliable TCR-pMHC (peptide-major histocompatibility complex) interactions and a neural network-based classifier TCRAI that outperforms other state-of-the-art methods for TCR-antigen specificity prediction. We further demonstrated that by combining ICON and TCRAI, we are able to discover novel subgroups of TCRs that bind to a given pMHC via different mechanisms. Our framework facilitates the identification and understanding of TCR-antigen-specific interactions for basic immunological research and clinical immune monitoring.
T 细胞受体 (TCR) 抗原特异性识别对于适应性免疫系统至关重要。然而,由于 TCR 和抗原的惊人多样性,构建 TCR-抗原相互作用图谱一直具有挑战性。因此,最近开发了高度多重化的 dextramer-TCR 结合测定法,但由于缺乏用于归一化和解释的强大计算方法,随后产生的大型数据集的实用性受到限制。在这里,我们提出了一个计算框架,包括一种新方法 ICON(综合上下文特异性归一化),用于识别可靠的 TCR-pMHC(肽-主要组织相容性复合物)相互作用,以及基于神经网络的分类器 TCRAI,该分类器在 TCR-抗原特异性预测方面优于其他最先进的方法。我们进一步证明,通过结合 ICON 和 TCRAI,我们能够发现通过不同机制结合给定 pMHC 的 TCR 的新亚群。我们的框架有助于识别和理解 TCR-抗原特异性相互作用,用于基础免疫学研究和临床免疫监测。
Immunobiology. 2006
Nat Commun. 2023-4-26
Int J Mol Sci. 2022-11-25
J Immunol Methods. 2013-3-13
Scand J Immunol. 2018-8-3
IEEE Trans Comput Biol Bioinform. 2025
Cell Rep Methods. 2025-7-21
Front Immunol. 2025-1-23
Bioinformatics. 2024-12-26
Brief Bioinform. 2024-11-22
Mol Syst Biol. 2020-8
Clin Cancer Res. 2020-3-15
Nucleic Acids Res. 2020-1-8