Suppr超能文献

深度学习在 T 细胞库中识别严重 SARS-CoV-2 感染的抗原决定簇。

Deep learning identifies antigenic determinants of severe SARS-CoV-2 infection within T-cell repertoires.

机构信息

Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.

The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.

出版信息

Sci Rep. 2021 Jul 12;11(1):14275. doi: 10.1038/s41598-021-93608-8.

Abstract

SARS-CoV-2 infection is characterized by a highly variable clinical course with patients experiencing asymptomatic infection all the way to requiring critical care support. This variation in clinical course has led physicians and scientists to study factors that may predispose certain individuals to more severe clinical presentations in hopes of either identifying these individuals early in their illness or improving their medical management. We sought to understand immunogenomic differences that may result in varied clinical outcomes through analysis of T-cell receptor sequencing (TCR-Seq) data in the open access ImmuneCODE database. We identified two cohorts within the database that had clinical outcomes data reflecting severity of illness and utilized DeepTCR, a multiple-instance deep learning repertoire classifier, to predict patients with severe SARS-CoV-2 infection from their repertoire sequencing. We demonstrate that patients with severe infection have repertoires with higher T-cell responses associated with SARS-CoV-2 epitopes and identify the epitopes that result in these responses. Our results provide evidence that the highly variable clinical course seen in SARS-CoV-2 infection is associated to certain antigen-specific responses.

摘要

SARS-CoV-2 感染的临床过程高度可变,患者可表现为无症状感染,也可发展至需要重症监护支持。这种临床过程的差异促使医生和科学家研究可能使某些个体更容易出现更严重临床表现的因素,以期在疾病早期识别这些个体,或改善其医疗管理。我们通过分析开放获取的 ImmuneCODE 数据库中的 T 细胞受体测序(TCR-Seq)数据,试图了解可能导致不同临床结果的免疫基因组差异。我们在数据库中确定了两个队列,这些队列具有反映疾病严重程度的临床结局数据,并利用 DeepTCR(一种多实例深度学习库分类器),根据其库测序结果预测严重 SARS-CoV-2 感染的患者。我们证明,严重感染患者的 T 细胞反应更高,与 SARS-CoV-2 表位相关,并确定了引起这些反应的表位。我们的研究结果表明,SARS-CoV-2 感染中观察到的高度可变的临床过程与某些抗原特异性反应有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6be/8275616/d6da56520b04/41598_2021_93608_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验